Shortest Path Routing

1 Introduction

Packet switch networks are dynamically changing systems that transport packets of data to different
sources to different destinations though a network of interconnected communication links. The state
of communications links can change, becoming more or less congested or failing completely. To
ensure robust data communication, we require efficient methods to choose routes across a network
that can react quickly to communication link changes.

Route generation and selection algorithms for packet switch networks may be broadly catego-
rized as either optimal routing algorithms or shortest path algorithm. Optimal routing algorithms
determine network traffic lows to minimizes network wide cost that is a function of link delays.
These algorithms are computationally intensive and often produce routes with several paths be-
tween a particular source and destination. Shortest paths algorithms determine a minimal cost
between a particular source and destination. Short-path algorithms generally have polynomial
complexity and generally only produce a produce a single path between a source and destination.
Most packet-switched networks use some form of shortest-path algorithm to generate and select
routes.

Shortest-path algorithms can be divided into two classes: distance vector and link state. Dis-
tance vector algorithms are based on dynamic programming models and can be implemented in a
distributed, asynchronous framework using local cost estimates. The basic distance vector algo-
rithm is known as the Bellman-ford algorithm or the Ford-Fulkerson method. Link state algorithms
are usually implemented in a replicated fashion with each switch performing an independent route
computation. To perform a route computation, link cost estimates are required for every link in
the network. The basic link state method is Dijkstra’s algorithm.

This set of lecture notes will present a brief overview of distance vector and link state link
state routing, with emphasis on the Bellman-Ford and Dijkstra’s algorithms. A more thorough
treatment of routing with practical implementations can be found in [1, 2], with [1] being the more
comprehensive source.

2 Shortest Path Routing

In shortest path routing, the topology communications network is represented using a directed
weighted graph. The nodes in the graph represent switching elements and the directed arcs in
the graph represent communication links between switching elements. Each arc has a weight that
represents the cost of sending a packet between two nodes in a particular direction. This cost
is generally a positive value that can inculcates such factors as delay, throughput, error rate,
monetary cost etc. A path between two nodes may go through several intermediary nodes and arc.
The objective in shortest path routing is to find a path between two nodes that has the smallest
total cost, where the total cost of a path is the sum of the arc costs in that path.



3 Distance Vector Routing

Distance vector routing has been in practical use longer than link state algorithms, with the first
large scale application in ARPANET [1, 2]. We represent the topology of a communication network
with a weighted directed graph, where the nodes represent switching elements and links represent
communication links. Let d;; represent the cost of the link from node ¢ to node j. If there is no
link from node ¢ to node j, then d;; = oo. In addition, let D;; be the cost corresponding to the
minimum-cost route or path from a source node ¢ to a destination node j. Note that in the lecture
slides, the destination node was assumed to be 1 and D; was used to represent the shortest distance
from source node ¢ to the destination node 1. Assuming link costs are additive, the minimum-cost
route from node 7 to node j can be found by solving Bellman’s equation:

Dii = 0 fors
Dij = min{di + Dyj} fori#j (1)

The Bellman equation can be iteratively solved, using the Bellman-Ford algorithm as

D’f’:i_'—l — 0, fori
Di = min{dy + Df}, fori# 2

with initial condition D?z- = 0 for all ¢ and D?j = oo for 7 # j. The Bellman-Ford algorithm can
be applied either for a fixed source node 7 or a fixed destination node j. In the lecture slides, the
destination node is fixed, although other references [1, 2] use a fixed source node. We consider the
case of a fixed destination node j for consistency with the lecture slides. For a fixed destination
node j, the algorithm terminates when the minimum-cost do not change, ij“ = Dj; for all i.
The first iteration of the Bellman-Ford algorithm finds the shortest distance from all nodes to node
7 subject to the constraint that each path can have up to one link. On the second iteration, the
maximum number of links in a path is constrained to two and on the k** iteration, the maximum
number of paths in each route is constrained to k. The Bellman-Ford algorithm hence takes the
form of a dynamic program. For a network with N nodes, each iteration must be done for N — 1
nodes where the minimization in (2) must be taken over a maximum of N — 1. Since a path can
have a maximum of N — 1 links, Bellman-Ford algorithm will terminate after a maximum N — 1
iteration, thus the computational the complexity of this algorithm is O(N?).
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Figure 1: Network Graph - Bellman-Ford Algorithm

In order to demonstrate the workings of the Bellman-Ford algorithm, consider the network
represented in Figure 1. The Bellman-Ford algorithm applied to the network in Figure 1 is shown
in Table 1 for a destination node 1. The shortest distances do not change between the 4" and
5" iterations, thus the algorithm terminates. The paths to node 1 from all other nodes can be



represented in a minimum-cost spanning tree shown in Figure 2. The spanning tree indicated the
path a packet would take to node 1. Note that if the direction of the arrows in Figure 1 were
reversed, the entries in Table 1 would correspond to problem of finding the shortest distance from
node 1 to all the other destination nodes.
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Figure 2: Spanning tree
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The Bellman-Ford algorithm is well suited to communication network applications. The algo-
rithm can be applied in a distributed fashion so that each node can calculate the shortest path to
all other nodes. If one or more links should fail in a distributed implementation, it is possible for
the nodes in the network to detect this failure and route around it. In a distributed implementa-
tion, each node ¢ can estimate the cost to each destination j in the following manner. For each
neighbor node k, node 7 collects k’s estimates of the cost to route to j, adds d;; to each estimate
and selects the smallest one. The distributed Bellman-Ford algorithm hence only requires local cost
information. For a given node, minimum distance information to each destination is usually stored
in a routing table. Each entry in the routing table includes the address of next — hop node on the
way to the destination and distance or cost to the destination (hence the name distance vector).
Practical implementation or the Bellman-Ford algorithm, such as Routing Information Protocol
(RIP), also contain a timestamp on each routing table entry. For the i node, the next-hop router
nh;; to a destination node j is given by

nhij = {k'* : {dzk* =+ Dk*j} = H}Cin{dik + ij}}, for 7 75 1 (3)

where the Dy;’s are the most recent minimum distance estimates from neighboring nodes. If a
packet arrives at node i that is destined for node j, node i forwards this packet to node nh;;.
Distributed implementations of the Bellman-Ford algorithm may be implemented synchronously



or asynchronously. The asynchronous Bellman-Ford algorithm is given by,

D;(t) = 0, fori
ij(t) = mkin{dikwLDZj(t)}, fori #1 (4)

where ij(t) is node k’s estimate of the cost from node 7 to node j at time ¢. The asynchronous
Bellman-Ford algorithm will converge to the minimal-cost routes in finite time provided the follow-
ing conditions hold [2]

1. Nodes must never stop recomputing or receiving cost estimates.
2. All cost estimates must be non-negative.
3. Old cost estimates do not remain indefinitely in the network.

and provided that there are link cost changes after a time ;.

Thus far, we have not explicitly considered the effect of dynamic changes in link cost. Link cost
changes generally result from either link failure or changes in link activity. A brute force solution
to possible changes in link costs is to constantly update routing tables and compute minimum-cost
routes. This can however waste a significant amount of network bandwidth. A better solution,
which is uses in RIP implementations, is to trigger updates only when link costs change. Consider
the case of a link cost change between node ¢ and node nh;;, where the node nh;; detects a link cost
change (this is typical since packets from 7 flow through nh;; to j). The node nh;; will indicate a
link cost change to node 7 and node ¢ will in turn indicate link cost changes to its other neighbors.
If the link between nodes 7 and nh;; fails, then a link cost change will not be triggered. To account
for link failures, Bellman-Ford implementations allow for aging and invalidating of entries in the
routing table. Periodically, a node has to ensure that it’s links are valid and trigger updates if link
failures are detected.

The Bellman-Ford algorithm is guaranteed to converge to the minimum-cost routs provided
that the link cost do not change after a certain point in time. The algorithm will not converge
however if link costs continually change and the convergence time is less than the time between
successive changes. In some cases, inconsistency can arise that result in routing loops that may
persist for some time.

Routing loops can occur as a result of the count-to-infinity problem. If a link between nodes
and j fails, then we assign an “infinite” cost to that link, which is in practice some number M that
is larger than the cost of all other routes. For some neighbor node k of node %, the cost of the path
from k-to-i-to-j is M +dy;, but since M is the maximum routing cost, we assign a cost of M to this
route. This can greatly slow down converges. Consider the network depicted in Figure 3, where for
simplicity we have assumed bidirectional links with the same cost in both directions. Now assume
that at some time ¢y, node B detects a link failure in the link between B and D. For simplicity,
assume a synchronous implementation of the asynchronous Bellman algorithm in (4) such that all
nodes send updates at times ¢;. The minimum distance routes for the Bellman-Ford algorithm at
each time instant #; are shown in Table 2 for a destination node D. Each entry in the table has a
next-hop node and a distance to D. Note that '+’ indicates a loop-back to A and ’—’ indicates an
unreachable destination. At time ¢y, B detects the failure of the link to D, but A, C still believe
there is a path through C' with cost of 2. At the next time instant, C fools B, A that there is a
path through C to D with a cost of 3 even though no such path exists. C' in turn believe there is a
path through A with cost of 3. This routing loop continues until the costs equal the cost of using
the link from C' to D.
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Figure 3: Network graph - count-to-infinity Problem

Table 2: Bellman-Ford Algorithm with Count-to-Infinity Problem
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The count-to-infinity problem can be readily solved using the technique of Split horizon. Split
horizon does not pass cost updates to a neighbor if that neighbor is the next-hop to a particular
destination. For example, at time ¢; the next-hop for node A is C, thus A can prevent a routing
loop by not telling C' there is a path to D through A.

4 Link State Routing

Link state routing was first applied in a mature implementation of ARPANET as a more flexible
and robust alternative to distance-vector routing. In link-state routing, each node maintains a
database of all the links in the network, hence the name “link-state”. This database, know as the
link-state database, is replicated across all the nodes in the networks. Each node can route packets
to a particular destination by calculating the shortest path from itself to the destination node. The
basic shortest path computation from a given node to all other nodes is performed using Dijkstra’s
algorithm.

Link-state routing over a communication network can be divided into two functions: computing
shortest path routes and replicating link-state databases. The shortest path calculation is efficiently
performed using Dijkstra’s algorithm, at a computational cost that is less than Bellman-Ford based
routing protocols. The task of replicating link-state information is accomplished by broadcasting
link-state advertisements (LSA’s), which contains the link-state data pertaining to a particular
node. We will first describe Dijkstra’s algorithm and then discuss the issues involved in distributing
LSA’s

Like the Bellman-Ford algorithm, Dijkstra’s algorithm constructs a minimum weight spanning
tree of a weighted direction of graph that represents the network topology. The root of this spanning
tree is the source node. With each iteration, a new node is added to the tree such that the path
cost to the new node is lower than the path cost to any other node not already in the tree. To
formalize this procedure, we define a set P of permanently labelled nodes that is the set of nodes



already in the spanning tree. Similar to distance vector routing, we let d;; represent the cost of
the link from node 4 to node j and let D;; be the minimum-cost path from a source node 7 to a
destination node j. If there is is no link between a source and destination then d;; = co and if the
source and destination are the same node then d; = 0. Dijkstra’s algorithm for a source node i is
a follows:

e Step 0: (Initialization) P = {i}, D;; = d;;, for all i
e Step 1: (Find closest node) Find 7 ¢ P such that

Set P = PU{j}. If P contains all nodes, then stop.

e Step 2: (Update distance estimates) For all k ¢ P set
Dik = min{Dik, DZ] + d]k}
Go to Step 1.

In the straight forward implementation of Dijkstra’s algorithm, there are N — 1 iterations and
each requires a number of operations that is proportionate to N, where NN is the number of nodes.
This leads to a computational complexity of O(N?), which is less that than the O(N?) complexity
of the Bellman-Ford algorithm. If the set of nodes not in P are stored in a heap data structure,
Dijkstra’s algorithm can however be performed with complexity O((N + [) x log(N)), where [ is
the number of links in the network [2].

In order to demonstrate the workings of Dijkstra’s algorithm, consider the network represented
in Figure 4. For a source node 1, Dijkstra’s algorithm has been applied to this network in Table 3.
The i** row indicates the distance from node 1 to each of the other node and also the nodes in the
permanently labelled set after the i*? iteration. The bolded element indicates the node entering
the permanently labelled set.

Figure 4: Network Graph - Dijkstra’s algorithm

Effective link-state routing requires all switch to perform a shortest path calculation on a com-
mon link-state network graph. When a switch powers up, it obtains a copy of the common network
graph from a neighboring switch. In the case of a link cost change, there needs to be a way to
update and replicate the network graph. A brute force solution is to send the entire network link-
state graph to all switches when the value of a link cost changes. This solution is not bandwidth
efficient. A better solution is to only send an update of the part of the network graph that has
changed. This is accomplished by representing the network graph as a set of LSA’s that are stored



Table 3: Iterations of Dijkstra’s Algorithm
Tteration # Dl,l D1,2 D1,3 D1’4 D1’5 P

init 1 4 o0 oo 1
1 2 9 oo 1,2
2 9 4 1,2,3
3 8 1,2,3,5
4 1,2,3,5,4

in a network database. Each LSA contains the link-state information pertaining to a particular
switch, thus when a link cost changes, only the LSA of the affected switch needs to be sent to the
other nodes. The LSA of a switch generally contain the following information:

e The identify of switch itself

e A list of operational links (outgoing links to forward traffic)

e Cost for each operational links

e Sequence number

e An indication of applications (mail,ftp,http) homed off the switch
A set of simplified LSA’s for the nodes in Figure 4 is shown in Table 4.
Table 4: Link-state Advertisements for nodes in Figure 4

Switch 1 || Switch 2 || Switch 3 || Switch 4 || Switch 5

SW2 |1 (| SW3 |3 ||SW2|2| SW5|2| SW4 |4
SW3 |4 SW4 |8 | SWs5 |2

When a link cost changes, LSA’s are broadcast to all the switches in a network through the
method of flooding. Flooding of of LSA’s can be accomplish in the following steps:

1. The switch receives a flooded LSA on one of its links

2. By examining sequence numbers, the switch determines if the received LSA is newer than
the corresponding LSA in its database (if any). If the received LSA is newer, it replaces the
current one and is rebroadcasted to all the switches links.

3. An acknowledgement is sent back on the link from which the LSA came from.

Flooding is a fast and robust way to ensure that all nodes receive an updated LSA. Accordingly,
link-state algorithms react quickly to link cost changes and do not suffer from slow convergence
issues that are present in distance-vector approaches.



5 Summary and Comparison

In this set of lecture notes, we presented two classes of shortest path algorithms: distance vector and
link state. Both classes of routing algorithms can be implemented in a distributed asynchronous
manner. Distance vector algorithms only require an exchange of local cost estimates, but can suffer
from slow convergence and routing loops. Link state algorithms require global cost estimates, but
are generally more robust and have faster convergence times.
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