

1
 3

Total

University of Toronto

Department of Computer Science

Midterm

CSC 458/2209: Computer Networks
Fall 2003
Last Name:
First Name:
Student ID:
Student: \quad undergraduate $\square \quad$ graduate \square.

- You have 50 mins to complete the midterm
- The midterm is closed book. You can use a basic (non-programmable) calculator.
- Show all steps for the derivations of your results.
- When we can't read it, we don't grade it.

Useful Formulas

Poisson process:

$$
\begin{gathered}
P\{N(T)=n\}=e^{-\lambda T} \frac{(\lambda T)^{n}}{n!} \\
E[N(T)]=\lambda T
\end{gathered}
$$

Exponential distribution:

$$
\begin{gathered}
P\{s \leq t\}=1-e^{-\mu t} \\
E[s]=\frac{1}{\mu}
\end{gathered}
$$

Series:

$$
\begin{gathered}
\sum_{n=0}^{\infty} \rho^{n}=\frac{1}{1-\rho} \\
\sum_{n=0}^{K} \rho^{n}=\frac{1-\rho^{K+1}}{1-\rho} \\
\sum_{n=1}^{\infty} n(1-p)^{n-1} p=\frac{1}{p} \\
\sum_{n=0}^{\infty} \frac{\alpha^{n}}{n!}=e^{\alpha}
\end{gathered}
$$

Little's Theorem:

$$
N=\lambda T
$$

$M / M / 1$ Queue:

$$
\begin{gathered}
p_{n}=(1-\rho) \rho^{n}, \quad n=0,1,2, \ldots \\
N=\frac{\rho}{1-\rho} \\
T=\frac{1}{\mu-\lambda}
\end{gathered}
$$

Question 1: (50 points total) ARQ Protocols

(a) (20 points) In the figure below, the two peer processes implement Selective Repeat ARQ with $\mathbf{n}=\mathbf{3}$. Fill in the values for SN and RN, indicate the window size at A and B, as well as the packets delivered to the next higher layer.
Use the convention that B always acknowledges the last error-free packet from A, and when A has to retransmit packets it starts with the $S N$ at the beginning of the window and retransmits packets that have not yet been acknowledge by B in order of their sequence number.

(b) (15 points) For the Stop-and-Wait ARQ protocol that we discussed in class, give an example which shows that the protocol does not work properly if we only use sequence numbers $S N$, but not request numbers $R N$.
(c) (15 points) Give an example where Selective Repeat ARQ with modulus m fails if $m=2 n-1$. Use $n=3$ for your example.

Question 2 (30 points total)

Consider a bank with two queues, 1 and 2 . Queue 1 is served by three clerks and queue 2 is served by one clerk. Two customers, B and C, enter the bank at the same time and find all of the 4 clerks busy, each serving one customers, and two customers waiting in queue 1 . Customer B joins queue 1 , and customer C joins queue 2. All Customers (including A, B and C) have independent, identical, exponential distribution of service time with a mean of 6 minutes.

(a) (15 points) What is the probability that customer B leaves the bank before customer A ?
(b) (15 points) What is the probability that customer C leaves the bank before customer A ?

Question 3 (20 Points total)

An important issue for wireless devices is energy-efficiency. One way to achieve this is by only initiate a data transmission when there are at least $K, K>1$, packets in the system. In this question, we model and analyze this situation.
Consider a wireless application which generates data packets according to a Poisson process with rate λ. Data packets are stored in a buffer to be transmitted over a wireless link. The packet transmission delay is exponentially distributed with mean $1 / \mu$. When the buffer empties out, then the device does not start sending again until K packets are in the system. Once service begins it proceeds normally until the system becomes empty again.
(a) (5 points) Draw the state-transition diagram.
(b) (15 points) Let p_{0} be the probability that the system is empty. Find the steady-state probabilities $p_{n}, n=1,2, \ldots$, of having n packets in the system as a function of p_{0}.

