

Note that

$$\lim_{\delta \to 0} \frac{\lambda \mu \delta^2}{\delta} = \delta = 0$$
$$\lim_{\delta \to 0} \frac{o(\delta)\mu \delta}{\delta} = o(\delta)\mu = 0$$
$$\lim_{\delta \to 0} o(\delta)^2 = 0.$$

Taylor expansion for a function $f(x): \Re \to \Re$

 $f(x) = f(0) + x f'(0) + o(\delta)$

4

Similarly, for $n = 1, 2,$ $P\{N(t + \delta) = n - 1 \mid N(t) = n\} = \mu \delta + o(\delta)$ $P\{N(t + \delta) = n \mid N(t) = n\} = 1 - \lambda \delta - \mu \delta + o(\delta)$ $\prod_{\substack{i=\lambda\delta \\ 0 \ j=0}}^{i=\lambda\delta - \mu\delta} \prod_{\substack{i=\lambda\delta - \mu\delta \\ 0 \ j=0}}^{i=\lambda\delta - \mu\delta} \dots \prod_{\substack{i=\lambda\delta - \mu\delta \\ 0 \ j=0}}^{i=\lambda\delta - \mu\delta} \prod_{\substack{i=\lambda\delta - \mu\delta \\ 0 \ j=0}}^{i=\lambda\delta - \mu\delta - \mu\delta} \prod_{\substack{i=\lambda\delta - \mu\delta \\ 0 \ j=0}}^{i=\lambda\delta - \mu\delta - \mu\delta + o(\delta)} \dots$ $p_n = (1 - \rho)\rho^n, \qquad n = 0, 1, 2, \dots$ for $\rho = \frac{\lambda}{\mu} < 1.$	 N = Σ_{n=0}[∞] np_n = ρ/(1-ρ) T = 1/(μ-λ) P_{loss} ≈ (1 − ρ)ρ^B As Internet changes - how does QoS change? Compare Packet-Switching with Circuit-Switching How should I upgrade my Network?
5 Average Number of Packets in the System	Average Packet Delay
$N = \sum_{n=0}^{\infty} np_n = \sum_{n=0}^{\infty} n(1-\rho)\rho^n$ = $(1-\rho)\sum_{n=0}^{\infty} n\rho^n = (1-\rho)\rho\sum_{n=0}^{\infty} n\rho^{n-1}$ = $(1-\rho)\rho\frac{\partial}{\partial\rho}\left(\sum_{n=0}^{\infty}\rho^n\right)$ = $(1-\rho)\rho\frac{\partial}{\partial\rho}\left(\frac{1}{1-\rho}\right) = (1-\rho)\rho\frac{1}{(1-\rho)^2}$ = $\frac{\rho}{1-\rho}$	Using Little's Theorem, we have $T = \frac{1}{\lambda}N,$ or $T = \frac{1}{\lambda}\frac{\rho}{1-\rho}$ $= \frac{1/\mu}{1-\rho}$ $= \frac{1}{\mu-\lambda}$

$$= \frac{1}{\lambda} \frac{1}{1-\rho}$$
$$= \frac{1}{\mu-\lambda}$$

Next

8

6

When the system can hold B packets (1 packet in service and (B-1) packets in the buffer), then we approximate

$$P_{loss} \approx (1-\rho)\rho^B$$
.

9

You will show this in the next assignment.