$M / M / 1$ Queue

Notation

- $A(t)$: number of packets that arrived in $[0, t]$
- $B(t)$: number of packets that departed in $[0, t]$
- $N(t)=A(t)-B(t)$: number of packets in the system (in queue and in service) at time t.

Time interval $[t, t+\delta]$

- $P\{A(t+\delta)-A(t)=1\}=$
- $P\{A(t+\delta)-A(t)=0\}=$
- $P\{B(t+\delta)-B(t)=1\}=$
- $P\{B(t+\delta)-B(t)=0\}=$

Transition Probabilities

For $n=1,2, \ldots$

$$
\begin{aligned}
P\{N(t+\delta)=n+1 \mid N(t)=n\} & =\lambda \delta \\
P\{N(t+\delta)=n-1 \mid N(t)=n\} & =\mu \delta \\
P\{N(t+\delta)=n \mid N(t)=n\} & =1-\lambda \delta-\mu \delta
\end{aligned}
$$

$$
p_{n}=(1-\rho) \rho^{n}, \quad n=0,1,2, \ldots
$$

for

$$
\rho=\frac{\lambda}{\mu}<1 .
$$

- $N=\sum_{n=0}^{\infty} n p_{n}=\frac{\rho}{1-\rho}$
- $T=\frac{1}{\mu-\lambda}$
- $P_{\text {loss }} \approx(1-\rho) \rho^{B}$
- As Internet changes - how does QoS change?
- Compare Packet-Switching with Circuit-Switching
- How should I upgrade my Network?

Average Number of Packets in the System

$$
\begin{aligned}
N & =\sum_{n=0}^{\infty} n p_{n}=\sum_{n=0}^{\infty} n(1-\rho) \rho^{n} \\
& =(1-\rho) \sum_{n=0}^{\infty} n \rho^{n}=(1-\rho) \rho \sum_{n=0}^{\infty} n \rho^{n-1} \\
& =(1-\rho) \rho \frac{\partial}{\partial \rho}\left(\sum_{n=0}^{\infty} \rho^{n}\right) \\
& \left.=(1-\rho) \rho \frac{\partial}{\partial \rho}\left(\frac{1}{1-\rho}\right)\right)=(1-\rho) \rho \frac{1}{(1-\rho)^{2}} \\
& =\frac{\rho}{1-\rho}
\end{aligned}
$$

Average Packet Delay

Using Little's Theorem, we have

$$
T=\frac{1}{\lambda} N,
$$

or

$$
\begin{aligned}
T & =\frac{1}{\lambda} \frac{\rho}{1-\rho} \\
& =\frac{1 / \mu}{1-\rho} \\
& =\frac{1}{\mu-\lambda}
\end{aligned}
$$

Packet Loss

When the system can hold B packets (1 packet in service and ($B-1$) packets in the buffer), then we approximate

$$
P_{\text {loss }} \approx(1-\rho) \rho^{B} .
$$

You will show this in the next assignment.

