Queueing Delay

\[\begin{array}{ccc}
\lambda & \text{Packets arriving} & \text{Buffer} \\
\mu & \text{Server} & \text{Packets departing} \\
\end{array} \]

- \(\lambda \): Packet arrival rate (packets/time)
- \(\mu \): Service rate (packets/time)
- \(\rho = \lambda/\mu \): Traffic intensity

We want to know:
- Average Number of Packets in the System
- Average Delay of a Packet (Queueing + Transmission Delay)

Notation

- \(A(t) \): Number of packets that arrived in \([0, t]\)
- \(B(t) \): Number of packets that departed in \([0, t]\)
- \(N(t) = A(t) - B(t) \): Number of packets in the system (in queue and in service) at time \(t \).
- \(T_i \): Time spent in the system by the \(i \)th arriving packet.
- \(N_t = \frac{1}{t} \int_0^t N(\tau) d\tau \): Time average number of packets in the system up to time \(t \).
- \(N = \lim_{t \to \infty} N_t \): (time) average number of packets in the system.

Notation (continued)

- \(\lambda_t = \frac{A(t)}{t} \): Time average arrival rate over \([0, t]\)
- \(\lambda = \lim_{t \to \infty} \lambda_t \): Steady state arrival rate
- \(T_t = \frac{\sum_{i=1}^{A(t)} T_i}{A(t)} \): Average time spent in the system per packet up to time \(t \)
- \(T = \lim_{t \to \infty} T_t \): Steady-state time average packet delay.

Outline:

- Little’s Theorem: \(N = \lambda T \)
- M/M/1 queue: \(N = \sum_{n=0}^{\infty} np_n \),
 where \(p_n \) is the steady-state probability that \(n \) packets are in the system.

Examples for Little’s Theorem:
- Traffic on a rainy day
- Fast-food restaurants
Probabilistic Formulation of Little’s Theorem:

So far: time average - “I observe the system for a long, long time”.
Next: ensemble average - “I come back at time \(t \) to check on the system”

- \(p_n(t) \): Probability that \(n \) packets are in the system at time \(t \).
- \(\bar{N}(t) = \sum_{n=0}^{\infty} n p_n(t) \): expected number of packets in the system at time \(t \)
- \(p_n = \lim_{t \to \infty} p_n(t) \): steady-state probability that \(n \) packets are in the system.
- \(\bar{N} = \sum_{n=0}^{\infty} n p_n \): steady-state expected number of packets in the system.
- \(T_k \): expected delay of the \(k \)th packet.
- \(\bar{T} = \lim_{k \to \infty} T_k \): expected packet delay.

Ergodic System and Little’s Theorem:

Ergodic Systems:

\[N = \bar{N} \quad \text{and} \quad T = \bar{T} \]

For ergodic systems, Little’s formula holds with \(N = \bar{N} \) and \(T = \bar{T} \), and

\[\lambda = \lim_{t \to \infty} \frac{\text{Expected number of arrivals in the interval } [0, t]}{t} \]

M/M/1 Queue

- Customers (packets) arrive according to a Poisson process.
- Service time is exponentially distributed.

Goal: want to determine the steady-state probability \(p_n \) that \(n \) customers are in the system.

Many Applications

- Call Centers
- Traffic planning
- Requests at a Web server