
Review: ARQ Protocols

Reliable Data Transfer?

Review: ARQ Protocols

A										1
T									Γ	`
N	N				N		1		N	
D	D	Ι)		Ι)	D		Ι)
Ph	Ph	ı P	h		P	h	Ph		P	h

Does it make sense to implement ARQ in more than one layer?

Review: ARQ Protocols

- Can we apply ARQ Protocols to Human Interaction (Communication)?
 - Stop-and-Wait
 - Go-Back n
 - Selective Repeat
- Can Apply ARQ in every layer
- \bullet Go-Back n ARQ can be used for:
 - Congestion Control
 - Flow Control
- One has to be careful when designing a ARQ protocol!

1

Where are we in the Course?

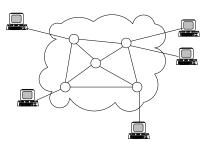
Basics:

- Network Types ("Hardware")
- Layered Network Architecture ("Software")
- Reliable Data Transfer
- Tools for Performance Analysis

Implementation:

- Design of Protocols
- Analysis of the Service provided by Protocols

2


Quality of Service

• Delay

 A	T			 			A	T''
T							T	T
N		N	1	N			N	
D		D	D	D	D		D	
Ph		Ph	Ph	Ph	Ph		Ph	

- Processing Delay
- Queueing Delay
- Transmission Delay
- Propagation Delay

Queueing Delay

Queueing Delay

 $\begin{array}{c|c} \lambda \text{ (packets per second)} \\ \hline & B \text{ (bits)} \end{array} \quad \begin{array}{c} C \text{ (bits per second)} \\ \end{array}$

Delay depends on B, C, and λ Maximal delay is equal to Loss depends on B, C, and λ

Design Objectives

- Given network resources and a Quality of Service (QoS) requirement, what is the maximal traffic load that we can support?
- Given network resources and a traffic load, what QoS do we obtain?
- Given a QoS requirement and a traffic load, what are the network resources that we need?

These questions are difficult to answer!

5

Approach

- Simple Models
- More Qualitative than Quantitative Analysis (Insight!)
- However, sometimes these models work quite well!

Relation between Traffic Load and Delay

Simple Model

9

Outline

Other Questions

- Average Delay?
- Expected Number of Packets in the Buffer?
- Probability that a Packet is lost?

We need a Probabilistic Model

Models

• Packet Arrivals: Poisson Process

• Packet Length: Exponential Distribution

• System: Queueing Theory