

Reliable Data Transfer?

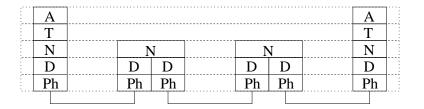
- Can we apply ARQ Protocols to Human Interaction (Communication)?
 - Stop-and-Wait
 - Go-Back n
 - Selective Repeat
- Can Apply ARQ in every layer
- Go-Back n ARQ can be used for:
 - Congestion Control
 - Flow Control
- One has to be careful when designing a ARQ protocol!

- Can we apply ARQ Protocols to Human Interaction (Communication)?
 - Stop-and-Wait
 - Go-Back n
 - Selective Repeat
- Can Apply ARQ in every layer
- Go-Back n ARQ can be used for:
 - Congestion Control
 - Flow Control
- One has to be careful when designing a ARQ protocol!

- Can we apply ARQ Protocols to Human Interaction (Communication)?
 - Stop-and-Wait
 - Go-Back n
 - Selective Repeat
- Can Apply ARQ in every layer
- Go-Back n ARQ can be used for:
 - Congestion Control
 - Flow Control
- One has to be careful when designing a ARQ protocol!

- Can we apply ARQ Protocols to Human Interaction (Communication)?
 - Stop-and-Wait
 - Go-Back n
 - Selective Repeat
- Can Apply ARQ in every layer
- Go-Back n ARQ can be used for:
 - Congestion Control
 - Flow Control
- One has to be careful when designing a ARQ protocol!

- Can we apply ARQ Protocols to Human Interaction (Communication)?
 - Stop-and-Wait
 - Go-Back n
 - Selective Repeat
- Can Apply ARQ in every layer
- Go-Back n ARQ can be used for:
 - Congestion Control
 - Flow Control
- One has to be careful when designing a ARQ protocol!


- Can we apply ARQ Protocols to Human Interaction (Communication)?
 - Stop-and-Wait
 - Go-Back n
 - Selective Repeat
- Can Apply ARQ in every layer
- Go-Back n ARQ can be used for:
 - Congestion Control
 - Flow Control
- One has to be careful when designing a ARQ protocol!

- Can we apply ARQ Protocols to Human Interaction (Communication)?
 - Stop-and-Wait
 - Go-Back n
 - Selective Repeat
- Can Apply ARQ in every layer
- Go-Back n ARQ can be used for:
 - Congestion Control
 - Flow Control
- One has to be careful when designing a ARQ protocol!

- Can we apply ARQ Protocols to Human Interaction (Communication)?
 - Stop-and-Wait
 - Go-Back n
 - Selective Repeat
- Can Apply ARQ in every layer
- Go-Back n ARQ can be used for:
 - Congestion Control
 - Flow Control
- One has to be careful when designing a ARQ protocol!

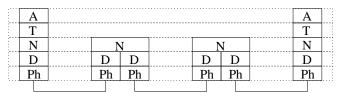
- Can we apply ARQ Protocols to Human Interaction (Communication)?
 - Stop-and-Wait
 - Go-Back nSelective Repeat
- Can Apply ARQ in every layer
- Go-Back n ARQ can be used for:
 - Congestion Control
 - Flow Control
- One has to be careful when designing a ARQ protocol!

- Can we apply ARQ Protocols to Human Interaction (Communication)?
 - Stop-and-Wait
 - Go-Back nSelective Repeat
- Can Apply ARQ in every layer
- Go-Back n ARQ can be used for:
 - Congestion Control
 - Flow Control
- One has to be careful when designing a ARQ protocol!

Does it make sense to implement ARQ in more than one layer?

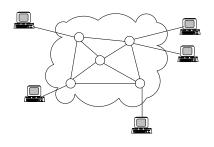
Where are we in the Course?

Basics:

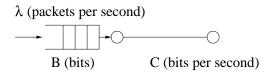

- Network Types ("Hardware")
- Layered Network Architecture ("Software")
- Reliable Data Transfer
- Tools for Performance Analysis

Implementation:

- Design of Protocols
- Analysis of the Service provided by Protocols


Quality of Service

Delay


- Processing Delay
- Queueing Delay
- Transmission Delay
- Propagation Delay

Queueing Delay

Queueing Delay

Delay depends on B, C, and λ Maximal delay is equal to Loss depends on B, C, and λ

- Given network resources and a Quality of Service (QoS) requirement, what is the maximal traffic load that we can support?
- Given network resources and a traffic load, what QoS do we obtain?
- Given a QoS requirement and a traffic load, what are the network resources that we need?

- Given network resources and a Quality of Service (QoS) requirement, what is the maximal traffic load that we can support?
- Given network resources and a traffic load, what QoS do we obtain?
- Given a QoS requirement and a traffic load, what are the network resources that we need?

- Given network resources and a Quality of Service (QoS) requirement, what is the maximal traffic load that we can support?
- Given network resources and a traffic load, what QoS do we obtain?
- Given a QoS requirement and a traffic load, what are the network resources that we need?

- Given network resources and a Quality of Service (QoS) requirement, what is the maximal traffic load that we can support?
- Given network resources and a traffic load, what QoS do we obtain?
- Given a QoS requirement and a traffic load, what are the network resources that we need?

- Given network resources and a Quality of Service (QoS) requirement, what is the maximal traffic load that we can support?
- Given network resources and a traffic load, what QoS do we obtain?
- Given a QoS requirement and a traffic load, what are the network resources that we need?


These questions are difficult to answer!

Approach

- Simple Models
- More Qualitative than Quantitative Analysis (Insight!)
- However, sometimes these models work quite well!

Relation between Traffic Load and Delay

Relation between Traffic Load and Delay

Simple Model

Other Questions

- Average Delay?
- Expected Number of Packets in the Buffer?
- Probability that a Packet is lost?

Other Questions

- Average Delay?
- Expected Number of Packets in the Buffer?
- Probability that a Packet is lost?

We need a Probabilistic Model

Outline

Models

- Packet Arrivals: Poisson Process
- Packet Length: Exponential Distribution
- System: Queueing Theory