

How to Master Complexity?

SMTP (Simple Mail Protocol

S: 220 sf.com

C: DATA

C: .

C: QUIT

C: How are you?

C: See you soon.

C: HELO toronto.edu

S: 250 Hello toronto.edu, pleased to meet you

S: 354 Enter mail, end with "." on a line by itself

C: MAIL FROM: <alice@toronto.edu>

S: 250 alice@toronto.edu... Sender ok *C: RCPT TO: <bob@sf.com>*

S: 250 bob@sf.com ... Recipient ok

S: 250 Message accepted for delivery

S: 221 sf.com closing connection

- Computer networks are very complex; many issues to address:
 - connection setup, message segmentation, multiplexing, routing, flow control, security, error control, encoding, addressing,
- Useful method for dealing with complexity is using **"modularity"**.
 - break complex problem into simpler sub-problems
 - use "black box" (input/output) abstraction for sub-problems

5

Modularity for Computer Networks

Hierarchical Layering: The type of functional modularity used for computer networks is hierarchical layering. What is special about this architecture is that it is distributed and connected through unreliable links with delays.

- Example: Postal Service
 - When I bring a letter to the post office, I don't know how it gets delivered from there. The office clerk doesn't know the exact details either, and so on.

Layered Network Architecture

Application Layer
Transport Layer
Network Layer
Data Link Layer
Physical Layer

There are several ways to define a layered network architecture. In this course, we consider the 5 Internet layers. Another model consists of the 7 OSI layers.

- Description of the different network layers
- Issues in layered network architecture
- > Read Chapter 1 in Textbook

- Know what the different layers do
- Know how layers interact
- Terminology: peer process, protocol, service

Application Layer

- Service: Supports applications
- Tasks:
 - Connection Setup
 - Flow control
 - Error control
- **Protocols:** HTTP to support Web, SMTP to support email, FTP to support file transfer.
- Location: End Systems/Hosts

SMTP (Simple Mail Protocol

- S: 220 sf.com
 - C: HELO toronto.edu
- S: 250 Hello toronto.edu, pleased to meet you
 - C: MAIL FROM: <alice@toronto.edu>
- S: 250 alice@toronto.edu... Sender ok *C: RCPT TO: <bob@sf.com>*
- S: 250 bob@sf.com ... Recipient ok *C: DATA*
- S: 354 Enter mail, end with "." on a line by itself *C: How are you?*

C: See you soon.

- С:.
- S: 250 Message accepted for delivery *C: QUIT*
- S: 221 sf.com closing connection

• Service: Prepares messages for being transported over the • **Service:** Sends data units over the network network. • Tasks: • Tasks: - Routing - Message fragmentation and reassembly - Addressing - Flow Control - Congestion control - Congestion control • Protocols: IP (Internet Protocol) - Error control • Location: End Systems/Hosts + Routers - Connection setup • Protocols: TCP (Transmission Control Protocol), UDP (User **Datagram** Protocol) • Location: End Systems/Hosts 13 14 Data Link Layer **Physical Layer** • Service: Sends data units over a link • Service: Sends bits over a link • Tasks: • Tasks: - Modem (Modulator/Demodulator) - Framing - Error control • Location: End Systems/Hosts + Routers - Retransmissions • Protocols: ARQ (Automatic Repeat Request), CSMA/CD for Ethernet and Wave LAN. • Location: End Systems/Hosts + Routers

