

Application

Transport

Network

Data Link

Physical

• Delivers data packets (segments) from the transport layer of the origin host to the transport layer of the destination host.

Functionality

- Path Determination (Routing)
- Switching
- Addressing

Layered Architecture

2

4

- Path Determination (Routing)
- Switching

Network Layer	Outline
 Complexity Coordination between peer processes of all nodes Error handling (link/node failure) Adaptation to changes in the traffic load 	 Introduction Routing Shortest Path Routing Bellman-Ford algorithm Dijkstra's algorithm Internet Nework Layer
5 Routing Algorithms	6 Routing Algorithms
	Performance Measure • Relation Throughput - Average Delay Delay foor routing good routing Good routing Farage Delay

Routing Algorithms		Virtual Circuit Service		
Routing Decision:		Connection Oriented		
Datagram service: for each packet		Virtual Circuit setup		
• Virtual Circuit service: for each session What is the advantage of virtual circuit service?		• Data Transfer		
		• Virtual Circuit teardown		
9	9		10	
Virtual Circuit Service	_	Datagram Service		
Call Admission Control		Connectionless		
Rate Allocation (and Policing)		no Call Admission Control		
• QoS guarantees		 no QoS guarantees ("best effort service") 		
		 – > dynamic transmission rate adaptation (TCP) 		

Routing Algorithms: Flooding

Routing Algorithms: Classification

Centralized - Distributed

- Centralized: routing decision are made at a central node
- Distributed: computation of routes is shared among the network nodes

Static - Dynamic

- Static: routes are fixed regardless of traffic conditions
- Dynamic: routes are changed in response to changes in traffic conditions (congestion)

Mechanism

• Each node forwards packets to all its neighbors

Rules

- do not send packet to node from where it was obtained
- send the same packet to a neighbor at most once

Why use Flooding?

- broadcast (topology) information
- when network topology changes frequently

13

Routing Algorithms: Shortest Path Routing

Cost

- •
- •
- -
- •

Routing Algorithms: Shortest Path Routing

Link costs will change with time and so may shortest path. Therefore, we need a way to efficiently compute the shortest paths. Two main approaches

- Bellman-Ford algorithm (Distance Vector Routing)
- Dijkstra's algorithm (Link State Routing)

- D_i : shortest distance from node *i* to the destination node 1
- d_{ij} : cost of link from node *i* to node *j*

Distance Vector Routing

- Distributed algorithm. Each nodes has local information.
- Each node maintains a table (distance vector) of its (best known) shortest distance to each destination node, as well as which link to get there.
- Each node knows the link costs to all its neighbors
- Nodes exchange their distance vector with its neighbors
- Nodes update their distance vector based on these exchanges

Bellman-Ford algorithm is used to update distance vector.

- **Bellman-Ford algorithm**
- Node 1 is the destination node
- $d_{ij} = \infty$, when no link from *i* to *j*
- $D_1^k = 0, k = 0, 1, 2, \dots$

Initialization

• $D_i^0 = \infty$, for all $i \neq 1$

Update

• $D_i^{k+1} = \min_j \{ d_{ij} + D_j^k \}, k = 0, 1, 2, \dots$

Dijkstra's algorithm

Find shortest form a source node to all other nodes.

Idea

- Find the closest node
- Find the second closest node
- etc.

17

Dijkstra's algorithm

- Node 1 is the source node
- $d_{ij} = \infty$, when no link from *i* to *j*
- *D_i*: estimate of distance from the source node 1 to node *i*
- *P*: set of "permanently labeled" nodes

Initialization

- $P = \{1\}$
- $D_1 = 0$
- $D_i = d_{i1}$, for all $i \neq 1$
- Update

Link State Routing

- Distributed algorithm. Each nodes needs global information.
- Each node discovers its neighbors and the corresponding link costs.
- Each node broadcasts this information to all other nodes.
- Using this global information, each node computes the shortest path to all other nodes.

Dijkstra's algorithm is used to compute the shortest path.

• Step 1: (Find closest node) Find $i \notin P$ such that

$$D_i = \min_{j \notin P} D_j$$

Set $P = P \cup \{i\}$. If *P* contains all nodes, then stop.

• Step 2: (Update distance estimates) For all $j \notin P$ set

$$D_j = \min\{D_j, D_i + d_{ij}\}$$

Go to Step 1.

22

Routing Algorithms

Distance Vector Routing

- Distributed algorithm
- Each node uses local information
- Suffers from count-to-infinity problem
- Can oscillate

Link State Routing

- Distributed algorithm
- Each node needs global information
- Can oscillate