Application
Transport
Network
Data Link
Physical

Service:

- Delivers data packets (segments) from the transport layer of the origin host to the transport layer of the destination host.

Functionality

- Path Determination (Routing)
- Switching
- Addressing

- Path Determination (Routing)
- Switching

Complexity

- Coordination between peer processes of all nodes
- Error handling (link/node failure)
- Adaptation to changes in the traffic load
- Introduction
- Routing
- Shortest Path Routing
- Bellman-Ford algorithm
- Dijkstra's algorithm
- Internet Nework Layer

Performance Measure

- Relation Throughput - Average Delay

Througput

Routing Decision:

- Datagram service: for each packet
- Virtual Circuit service: for each session

What is the advantage of virtual circuit service?

Connection Oriented

- Virtual Circuit setup
- Data Transfer
- Virtual Circuit teardown

Virtual Circuit Service

Call Admission Control

- Rate Allocation (and Policing)
- QoS guarantees

Connectionless

- no Call Admission Control
- no QoS guarantees ("best effort service")
$->$ dynamic transmission rate adaptation (TCP)

Centralized - Distributed

- Centralized: routing decision are made at a central node
- Distributed: computation of routes is shared among the network nodes

Static - Dynamic

- Static: routes are fixed regardless of traffic conditions
- Dynamic: routes are changed in response to changes in traffic conditions (congestion)

Mechanism

- Each node forwards packets to all its neighbors

Rules

- do not send packet to node from where it was obtained
- send the same packet to a neighbor at most once

Why use Flooding?

- broadcast (topology) information
- when network topology changes frequently

Routing Algorithms: Shortest Path Routing

Link costs will change with time and so may shortest path. Therefore, we need a way to efficiently compute the shortest paths.

Two main approaches

- Bellman-Ford algorithm (Distance Vector Routing)
- Dijkstra's algorithm (Link State Routing)

Find shortest path from all nodes to a destination node.

D_{i} : shortest distance from node i to the destination node 1
$d_{i j}$: cost of link from node i to node j

- Node 1 is the destination node
- $d_{i j}=\infty$, when no link from i to j
- $D_{1}^{k}=0, k=0,1,2, \ldots$

Initialization

- $D_{i}^{0}=\infty$, for all $i \neq 1$

Update

- $D_{i}^{k+1}=\min _{j}\left\{d_{i j}+D_{j}^{k}\right\}, k=0,1,2, \ldots$

Dijkstra's algorithm

Find shortest form a source node to all other nodes.

Idea

- Find the closest node
- Find the second closest node
- etc.
- Node 1 is the source node
- $d_{i j}=\infty$, when no link from i to j
- D_{i} : estimate of distance from the source node 1 to node i
- P : set of "permanently labeled" nodes

Initialization

- $P=\{1\}$
- $D_{1}=0$
- $D_{i}=d_{i 1}$, for all $i \neq 1$

Update

- Step 1: (Find closest node) Find $i \notin P$ such that

$$
D_{i}=\min _{j \notin P} D_{j}
$$

Set $P=P \cup\{i\}$. If P contains all nodes, then stop.

- Step 2: (Update distance estimates) For all $j \notin P$ set

$$
D_{j}=\min \left\{D_{j}, D_{i}+d_{i j}\right\}
$$

Go to Step 1.

Routing Algorithms

Distance Vector Routing

- Distributed algorithm
- Each node uses local information
- Suffers from count-to-infinity problem
- Can oscillate

Link State Routing

- Distributed algorithm
- Each node needs global information
- Can oscillate

