Where Are We? Basics: Network Classification Network Architecture Delay Models Implementation: Protocol Design

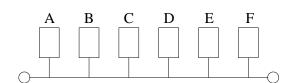
Layered Architecture

Application
Transport

Network

Data Link

Physical


2

Data Link Layer

Functionality

- Reliable Delivery of Frames
- Flow Control
- Error Detection
- Error Correction

Multiaccess Media

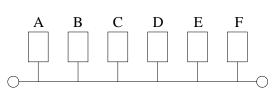
Multiaccess Media

Multiaccess Media

Rules

- "Don't interrupt when someone else is speaking"
- "Raise your hand if you have a question"
- "Give everyone a chance to speak"

Wavelan


Cocktail Party

5

Protocols for Multiaccess Networks

Multiaccess Protocols

- Channel Partitioning (Wireless Communication)
- Random Access (Ethernet)
- Taking Turns (Token Ring)

- Hosts broadcast packets
- When a collision occurs, all transmitted packets are lost
- Lost packets have to be retransmitted

=> Need Multiaccess Protocol

Protocols for Multiaccess Networks

Goal:

- Understand Multiaccess Protocols
- Understand Ethernet Protocol

Issues:

- How to deal with collisions? (- > Protocol design)
- Maximal traffic load? (-> Protocol performance)

Model - Slotted Aloha

• Time is divided into slots:

unit time = $\frac{L}{C}$ seconds

- Packet arrival rate (over all hosts) of λ packets/time unit
- Collision or Perfect Reception
- Immediate Feedback: 0, 1, e
- Retransmission Probability: q_r
- Infinite number of hosts i.e. each node has at most one packet to transmit)

9

10

Model - Slotted Aloha

Questions

- Throughput?
- How to choose q_r ?

Would $q_r = 1$ work?

Probability for retransmission after k-1 slots:

Average time until retransmission:

Model - Slotted Aloha

Notation

- λ : aggregated arrival rate
- *n*: number of backlogged packets
- $G(n) = nq_r$: average number of arrivals per time slot

Want to compute

- P_{succ} : probability of successful transmission in a time slot (as a function of G(n))
- Throughput = $\frac{P_{succ}}{1}$

11

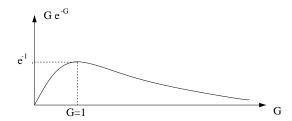
Model - Slotted Aloha

$$P_{succ} = nq_r \left(1 - q_r\right)^{n-1} = \frac{nq_r}{1 - q_r} \left(1 - q_r\right)^n$$

For q_r small, we have

$$\left(1-q_r\right)^n pprox e^{-nq_r} \qquad \text{and} \qquad \frac{nq_r}{1-q_r} pprox nq_r,$$

and we obtain


$$P_{succ} \approx nq_r e^{-nq_r} = G(n)e^{-G(n)}$$

where $G(n) = nq_r$

Note: Poisson distribution with parameter *G*:

$$p_k = \frac{G^k}{k!}e^{-G}$$

Model - Slotted Aloha

- If $G(n)e^{-G(n)} > \lambda$:
- If $G(n)e^{-G(n)} < \lambda$:
- Optimal $G(n) = nq_r = 1$, or

$$q_r = \frac{1}{n}$$

13

14

Model - Slotted Aloha

What did we learn?

- $\lambda_{max} = e^{-1} \approx 0.368$
- q_r should dynamically change

Binary Exponential Backoff

•
$$q_r = 2^{-k}$$