Basics:

Network Classification Network Architecture Reliable Data Transfer Delay Models Implementation: Protocol Design

・ 同 ト ・ ヨ ト ・ ヨ ト …

Application Transport Network Data Link Physical

CSC458/2209 - Computer Networks

◆□ > ◆□ > ◆豆 > ◆豆 > →

æ

Layered Architecture

CSC458/2209 - Computer Networks

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Functionality

- Reliable Delivery of Frames
- Flow Control
- Error Detection
- Error Correction

・ 同 ト ・ ヨ ト ・ ヨ ト …

Multiaccess Media

Ethernet

CSC458/2209 - Computer Networks

< 🗇 ▶

< 注 → < 注 → </td>

æ

Multiaccess Media

Wavelan

Cocktail Party

◆□ > ◆□ > ◆豆 > ◆豆 > →

2

CSC458/2209 - Computer Networks

- "Don't interrupt when someone else is speaking"
- "Raise your hand if you have a question"
- "Give everyone a chance to speak"

→ Ξ → < Ξ →</p>

- "Don't interrupt when someone else is speaking"
- "Raise your hand if you have a question"
- "Give everyone a chance to speak"

(* E) * E)

- "Don't interrupt when someone else is speaking"
- "Raise your hand if you have a question"
- "Give everyone a chance to speak"

프 🖌 🛪 프 🛌

- "Don't interrupt when someone else is speaking"
- "Raise your hand if you have a question"
- "Give everyone a chance to speak"

프 > - 프 > -

- Channel Partitioning (Cellular Wireless Networks)
- Random Access (Ethernet, WiFi)
- Taking Turns (Token Ring)

ヘロト ヘアト ヘビト ヘビト

• Channel Partitioning (Cellular Wireless Networks)

- Random Access (Ethernet, WiFi)
- Taking Turns (Token Ring)

ヘロン 人間 とくほ とくほ とう

- Channel Partitioning (Cellular Wireless Networks)
- Random Access (Ethernet, WiFi)
- Taking Turns (Token Ring)

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Channel Partitioning (Cellular Wireless Networks)
- Random Access (Ethernet, WiFi)
- Taking Turns (Token Ring)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Ethernet

- Hosts broadcast packets
- When a collision occurs, all transmitted packets are lost
- Lost packets have to be retransmitted

Ethernet

Hosts broadcast packets

- When a collision occurs, all transmitted packets are lost
- Lost packets have to be retransmitted

Ethernet

- Hosts broadcast packets
- When a collision occurs, all transmitted packets are lost
- Lost packets have to be retransmitted

Ethernet

- Hosts broadcast packets
- When a collision occurs, all transmitted packets are lost
- Lost packets have to be retransmitted

Ethernet

- Hosts broadcast packets
- When a collision occurs, all transmitted packets are lost
- Lost packets have to be retransmitted

=> Need Multiaccess Protocol

Goal:

- Understand Multiaccess Protocols
- Understand Ethernet and IEEE 802.11 Protocol

Issues:

- How to deal with collisions? (- > Protocol design)
- Maximal traffic load? (-> Protocol performance)

< 回 > < 回 > < 回 > … 回

Goal:

Understand Multiaccess Protocols

• Understand Ethernet and IEEE 802.11 Protocol

Issues:

- How to deal with collisions? (- > Protocol design)
- Maximal traffic load? (-> Protocol performance)

個人 くほん くほん 一日

Goal:

- Understand Multiaccess Protocols
- Understand Ethernet and IEEE 802.11 Protocol **Issues:**

• How to deal with collisions? (-> Protocol design)

• Maximal traffic load? (-> Protocol performance)

□ > < 注 > < 注 > 注 → ○ < ⊙

Goal:

- Understand Multiaccess Protocols
- Understand Ethernet and IEEE 802.11 Protocol

Issues:

- How to deal with collisions? (-> Protocol design)
- Maximal traffic load? (-> Protocol performance)

□ > < 注 > < 注 > 注 → ○ < ⊙

Goal:

- Understand Multiaccess Protocols
- Understand Ethernet and IEEE 802.11 Protocol

Issues:

- How to deal with collisions? (-> Protocol design)
- Maximal traffic load? (-> Protocol performance)

- Packet arrival rate (over all hosts) of λ packets/time unit
- Collision or Perfect Reception
- Immediate Feedback: 0, 1, e
- (Re-)transmission Probability: q_r
- Infinite number of hosts (i.e. each node has at most one packet to transmit)

- Collision or Perfect Reception
- Immediate Feedback: 0, 1, e
- (Re-)transmission Probability: q_r
- Infinite number of hosts (i.e. each node has at most one packet to transmit)

(雪) (ヨ) (ヨ)

- Collision or Perfect Reception
- Immediate Feedback: 0, 1, e
- (Re-)transmission Probability: q_r
- Infinite number of hosts (i.e. each node has at most one packet to transmit)

(雪) (ヨ) (ヨ)

- Collision or Perfect Reception
- Immediate Feedback: 0, 1, e
- (Re-)transmission Probability: q_r
- Infinite number of hosts (i.e. each node has at most one packet to transmit)

個 とく ヨ とく ヨ とう

- Collision or Perfect Reception
- Immediate Feedback: 0, 1, e
- (Re-)transmission Probability: q_r
- Infinite number of hosts (i.e. each node has at most one packet to transmit)

個 とく ヨ とく ヨ とう

• Throughput?

• How to choose q_r ?

- Would $q_r = 1$ work?
- Probability for (re-)transmission after k 1 slots:
- Average time until (re-)transmission:

<ロ> (四) (四) (三) (三) (三) (三)

Throughput?

- How to choose q_r ?
 - Would $q_r = 1$ work?
 - Probability for (re-)transmission after k 1 slots:
 - Average time until (re-)transmission:

<ロ> (四) (四) (三) (三) (三) (三)

Throughput?

How to choose q_r?

- Would $q_r = 1$ work?
- Probability for (re-)transmission after k 1 slots:
- Average time until (re-)transmission:

・ 同 ト ・ ヨ ト ・ ヨ ト …

Throughput?

- How to choose q_r?
 - Would $q_r = 1$ work?
 - Probability for (re-)transmission after k 1 slots:
 - Average time until (re-)transmission:

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Throughput?

- How to choose q_r?
 - Would $q_r = 1$ work?
 - Probability for (re-)transmission after k 1 slots:
 - Average time until (re-)transmission:

・ 同 ト ・ ヨ ト ・ ヨ ト …

• Throughput?

- How to choose q_r?
 - Would $q_r = 1$ work?
 - Probability for (re-)transmission after k 1 slots:
 - Average time until (re-)transmission:

・ 同 ト ・ ヨ ト ・ ヨ ト …

Notation

- λ : aggregated arrival rate
- n: number of backlogged packets
- $G(n) = nq_r$: average number of transmissions per time slot

Want to compute

- *P*_{succ}: probability of successful transmission in a time slot (as a function of *G*(*n*))
- Throughput = $\frac{P_{succ}}{1}$

個 とく ヨ とく ヨ とう

- λ: aggregated arrival rate
- n: number of backlogged packets
- $G(n) = nq_r$: average number of transmissions per time slot

Want to compute

- *P*_{succ}: probability of successful transmission in a time slot (as a function of *G*(*n*))
- Throughput = $\frac{P_{succ}}{1}$

通り イヨト イヨト

Notation

- λ: aggregated arrival rate
- n: number of backlogged packets
- $G(n) = nq_r$: average number of transmissions per time slot

Want to compute

- *P*_{succ}: probability of successful transmission in a time slot (as a function of *G*(*n*))
- Throughput = $\frac{P_{succ}}{1}$

御下 《唐下 《唐下 》 唐

- λ: aggregated arrival rate
- n: number of backlogged packets
- $G(n) = nq_r$: average number of transmissions per time slot

Want to compute

- *P*_{succ}: probability of successful transmission in a time slot (as a function of *G*(*n*))
- Throughput = $\frac{P_{succ}}{1}$

< 回 > < 回 > < 回 > … 回

- λ: aggregated arrival rate
- n: number of backlogged packets
- $G(n) = nq_r$: average number of transmissions per time slot

Want to compute

- *P*_{succ}: probability of successful transmission in a time slot (as a function of *G*(*n*))
- Throughput = $\frac{P_{succ}}{1}$

<週 > < 注 > < 注 > . 注

- λ: aggregated arrival rate
- n: number of backlogged packets
- $G(n) = nq_r$: average number of transmissions per time slot

Want to compute

- *P*_{succ}: probability of successful transmission in a time slot (as a function of *G*(*n*))
- Throughput = $\frac{P_{succ}}{1}$

< 回 > < 回 > < 回 > … 回

$$P_{succ} = nq_r (1-q_r)^{n-1} = \frac{nq_r}{1-q_r} (1-q_r)^n$$

CSC458/2209 - Computer Networks

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@

$$P_{succ} = nq_r (1-q_r)^{n-1} = \frac{nq_r}{1-q_r} (1-q_r)^n$$

For q_r small, we have

$$\left(1-q_r\right)^n \approx e^{-nq_r}$$
 and $\frac{nq_r}{1-q_r} \approx nq_r$,

CSC458/2209 - Computer Networks

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$P_{succ} = nq_r (1-q_r)^{n-1} = \frac{nq_r}{1-q_r} (1-q_r)^n$$

For q_r small, we have

$$\left(1-q_r\right)^n \approx e^{-nq_r}$$
 and $\frac{nq_r}{1-q_r} \approx nq_r$,

and we obtain

$$P_{succ} \approx nq_r e^{-nq_r} = G(n)e^{-G(n)}$$

where $G(n) = nq_r$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Throughput:

 $G(n)e^{-G(n)}$

where $G(n) = nq_r$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Throughput:

$$G(n)e^{-G(n)}$$

where $G(n) = nq_r$

Note: Arrivals according to a Poisson distribution with rate G:

$$p_k = \frac{G^k}{k!} e^{-G}$$

CSC458/2209 - Computer Networks

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$q_r = \frac{1}{n}$$

CSC458/2209 - Computer Networks

ヘロト 人間 とくほとくほとう

₹ 990

- If $G(n)e^{-G(n)} > \lambda$:
- If $G(n)e^{-G(n)} < \lambda$:
- Optimal $G(n) = nq_r = 1$, or

$$q_r = \frac{1}{n}$$

CSC458/2209 - Computer Networks

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• If $G(n)e^{-G(n)} < \lambda$:

• Optimal $G(n) = nq_r = 1$, or

$$q_r = \frac{1}{n}$$

CSC458/2209 - Computer Networks

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Optimal
$$G(n) = nq_r = 1$$
, or

$$q_r = \frac{1}{n}$$

CSC458/2209 - Computer Networks

₹ 990

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

What did we learn?

- $\lambda_{max} = e^{-1} \approx 0.368$
- q_r should dynamically change

Binary Exponential Backoff

• $q_r = 2^{-k}$

(個) (日) (日) (日)

What did we learn?

- $\lambda_{max} = e^{-1} \approx 0.368$
- q_r should dynamically change

Binary Exponential Backoff

• $q_r = 2^{-k}$

CSC458/2209 - Computer Networks

(個) (日) (日) (日)

What did we learn?

- $\lambda_{max} = e^{-1} \approx 0.368$
- q_r should dynamically change

Binary Exponential Backoff

• $q_r = 2^{-k}$

CSC458/2209 - Computer Networks

(個) (日) (日) (日)

What did we learn?

- $\lambda_{max} = e^{-1} \approx 0.368$
- q_r should dynamically change

Binary Exponential Backoff

•
$$q_r = 2^{-k}$$

CSC458/2209 - Computer Networks

프 에 에 프 어 - -