Lecture 1 notes

Kevin Brewer

November 5, 2002

1 Networks: the basics

With the growth of the internet, networking has become an ever-present aspect of computing. Once
relegated to business offices, the military and universities, networking has now entered the home
through the World Wide Web and email.

With networking now such an integrated part of the computer, the inner complexities of net-
working are lost on most users. This course aims to explain the basic concepts involved in network-
ing.

At its heart, the goal of networking is the transfer and sharing of information with other users.
Though this may appear to be a simple process, networking draws on such diverse areas as com-
puters, information theory, probability, signal processing, electronics, graph theory, cryptography
and physics.

1.1 The core idea

Networks exist to perform one ultimate function: to provide services that allow users to send
information from one host to another host.

Information is sent from one host to another by means of data transfer. Data transfer may
be the core function of a network, but this transfer is used for a myriad of applications. Email,
web browsing, voice communications, video conferencing, and even games all use data transfer to
perform their specific tasks. Essentially, any information that can be quantified digitally can (and
will) be sent over a network.

Notice before the use of the word service to describe the action of a network. Service defines
how information is delivered between the sender and receiver. This service is performed by two key
components: hardware(also known as the infrastructure) and software (also known as the protocols)
which will both be discussed in greater detail later. It is important to note that the network does
not know what is being delivered between the two hosts, nor do the hosts know how the information
is going to be sent. On the internet, there are different types of services: these will be discussed
later.

1.2 Example: the postal service

For example, look at the Postal system: the person sending the mail does not need to know how it
arrives there, nor does the post office need to know the contents of the envelope. Instead, the two
parties agree on an addressing system and the post office takes care of the delivery. Like a computer
network, there is no single process to deliver the piece of mail. instead, the mail is processed in
hops, with each stage sending it the next step to be handled there. When routers are discussed, it
will be clear that a computer network uses the same strategy.



The postal service has the equivalent of hardware and software. Think of the people, machinery
and buildings of the postal service to be the hardware. The software, however, lies in the procedures
and protocols that the company follows. These procedures allow the post office to properly and
efficiently send mail using pre-defined conventions of addressing.

Continuing the postal example, there are different levels of service as well (first class and regu-
lar). The mail arrives faster depending on which level of service is asked for. These different levels
of service work using the same hardware (i.e. the postal facilities) but have different procedures to
deal with the differences in service. The internet has two service types, called connection-oriented
and connectionless, which will be discussed later.

Ultimately, however, the postal service serves to show that the post office is a separate en-
tity from those who use it, just like a network. The following part describes the basic hardware
components of a network.

1.3 The hardware of a network

Consider figure 1: this represents a simplified view of a network. Notice there are two key compo-
nents to the network: switches/routers and terminal/host/end systems.

Terminal / Host / End System

Figure 1: A basic network

Switches (also known as routers) are computers with the sole purpose of handling the data sent
in between the hosts. The job of switches is to make sure the information sent from a host arrives
intact at the proper destination. Thus, error control, routing (i.e. sending the data to the correct
destination) and flow/congestion control are the major functions of routers. Hosts are connected
to switches, and switches are connected to each other through links.

The hosts are the endpoints for a given piece of network traffic. The hosts are the sender and
the receiver. Generally, the major concern of the hosts is the application being run that requires
the data to be transferred. This is where the protocols are more concerned about the end-to-end
information, instead of routing and error correction.

The hosts deal with the high-level data, and send it onto the network to be handled by the
switches/routers. Note that in small networks, hosts may function as a switch or router as well.

All of these components are connected together with links. A link is the connection between
each computer on the network. A link can be a phone line, a coaxial cable, fiber-optic cable, copper
cable, or even a wireless transmission. These links are the physical connections between the systems
that enable the network to function.



The hardware used for a network should be dependent on the needs of the network users, which
includes the programs being run on the network, the number of users and the volume of data
sent by each user. For instance, a single user generally does not need a dedicated T1 line, and a
trans-Atlantic cable better be more than a couple of network cables! Such examples are extreme,
but serve to demonstrate that one must consider the scale of the network when deciding upon the
hardware.

Concerns about the hardware are not limited to the volume of users. If data needs to be sent
error-free, the designer should consider more reliable links to minimize the data that has to be
re-sent. Such concerns also affect the choice of routers within the system as well.

In addition to the type of components used, the layout of said components must also be consid-
ered. For example, a LAN may be fast, but if the only connection to the internet is through a slow
link, then all the traffic will be bottlenecked and very slow. Security concerns are also a factor: if
some systems are particularly sensitive, it might be a bad idea to set up the network such that all
network traffic comes through those systems, or even to allow traffic on those systems at all.

1.4 Protocols: the software of a network

Once the hardware is in place, software still needs to be present in order allow the network to
function properly. When people think of network software, they think of the end-user applications:
email programs, web browsers, and other such software. In reality, these programs are just the end-
points; what networks really use are programs which rely on protocols. Protocols are the standard
methods which a network uses to transmit data between endpoints; such protocols include things
like ARQ, TCP/IP and UDP, which will all be discussed later. Section 3 explains protocols in more
detail, and Section 2 will explain the difference between two different types of service protocols;
connectionless and connection oriented.

1.5 Modularity of networks

Considering how many different applications use the name network (in most cases the internet),
it might be initially surprising that a single network can support such a wide variety of programs.
This flexibility of design is one of the key features of a network; namely, the hardware and software
of a network is generally separate from the applications running them.

This modularity of networks versus the applications using them is a key point that will be in
greater detail later. Additionally, the network itself is modular, with different tasks being covered
by separate pieces of hardware or software. Later on, the concept of the layered model of networking
will be introduced, which goes into how the various tasks and parts of the network are divided.

1.6 Differences in network requirements

Given the precious statement of networks being independent of their applications, one might mis-
takenly believe that all applications work the same way over a network. This is not so.

In fact, different applications use the same network, but can rely on different ways of using
the network depending on the requirements. For instance, one application may require fast com-
munication, but can handle small errors in the files transferred. Another application may not be
time-dependent, but needs the data sent to be correct. The question is: can the same network
handle these two different requirements?

The answer is yes. Once again, the modularity of a network becomes handy, since we can use
different modules to meet different requirements for the particular application. At the most basic



level, these different ways of handling data are called network services, which will be discussed in
section 2.

1.7 The internet: A network of networks

No single group owns the internet; that is, computers (or groups of computers) that make up the
internet are controlled independently of each other. The reason behind this is that the internet is
actually a network of networks connected together under a mutual agreement to transmit data.

Figure 2: A network of networks

The internet is the ultimate example of how autonomous networks can function together. This
is a perfect example where modularity comes in handy; since each system can have its own imple-
mentation, there is no problem dealing with individual differences between networks.

2 Network services

When applications send data, a choice must be made about the type of service used. In networking,
there are two choices: connection-oriented and connectionless services.

2.1 Connection-oriented

A service is said to be connection-oriented if the two systems in communication engage in some
initial setting up of a link, known as handshaking. This handshaking requires extra time to set up,
but results in more reliable data transfer.

By a reliable data transfer, it is meant that packets are sent in order and without error. If there
are errors, it is reported and the data can be re-sent. Additionally, the two systems decide what
rate the data is sent and received to ensure that both sides can handle the communication; this is
known as flow control. Finally, the two systems engage in congestion control, that is, they make
sure the packets being sent are not bottlenecked at a single point. These three aspects allow for a
reliable transfer of data between the systems.

On the internet, the connection-oriented service used is called TCP, which stands for Trans-
mission Control Protocol. Later on in the course TCP will be examined to show how it achieves
reliable data transfer.

An example of a connection-oriented service in our daily lives would be depositing money at a
bank with a bank teller. In such a case, the teller serves to ensure that our identity is confirmed,
the amount deposited is correct, and that the money has in fact been added to our account. This



service would take a bit more time than an automated service, but it ensures that everything has
gone right.

2.2 Connectionless

In contrast to a connection-oriented service, a connectionless service does not have any handshaking
between the two systems. The result is a service that is less reliable, but faster.

Such sending is risky, because there is no allowance for reliable data transfer, flow control or
congestion control. As such, the data packets may arrive out of order, may be corrupted, and the
receiving system may be overwhelmed by the packets; this possibility is the tradeoff for greater
speed.

In terms of computer systems, connectionless systems are most commonly used for services
such as streaming video; for such an application the data must be sent as quickly as possible, and
lost packets need to be ignored to allow for sufficiently fast transmission. On the internet, the
connectionless service used is called UDP, or User Datagram Protocol.

The previous part used a bank teller as an example of a connection-oriented service. For a
connectionless service, consider the case of a night deposit slot. When items are deposited, the slot
has no way of verifying the identity of the depositor, so if the wrong account number is entered,
there is no immediate detection of the error.

Additionally, the amount deposited is not counted, so an error there will not be detected.
Finally, there is no confirmation of the deposit. In fact, the deposit envelope may be jammed in
the slot somewhere and neither side will know it. This is akin to connectionless systems having not
confirming connection or managing flow control, so the system may be overwhelmed.

Such a lack of features may make deposit slots seem unattractive to a customer, but they do
offer a significant advantage.The advantage of a night deposit box is that the items to be deposited
can simply be dumped in the slot, making the process much faster. A teller, on the other hand,
would have to go through each of the items to be deposit and confirm them.

Another difference lies in the availability. In order to deposit items with a teller, the branch
must be open and a teller must be available. This involves coming at a specific time and possibly
waiting in line before being able to be serviced. A night deposit allows the customer to deposit
at any time with little likelihood of a lineup. On a network, the same principle applies; a connec-
tionless service need not check for the availability of other system, since it sends without needing
to handshake. Though this may be less reliable, it does allow for more efficient service. These
differences demonstrate how connectionless services can be faster and more available, but have less
tolerance for problems.

3 Protocols

With the network architecture in place, software must be created to allow the sender and the
receiver to use the hardware. The software must meet the requirements of the application using
the network, and must work with the architecture provided.

Network communication is a complicated procedure; at the top level, you have two communi-
cating devices sending messages between each other over a physical medium, such as a phone line.
These messages are are subject to both time delay and loss, and neither system can be completely
sure of the status of the other system. How do systems such as this manage to communicate?

The answer: protocols.



3.1 Definition:

A protocol is a predefined set of actions in order to achieve a certain goal. In the case of computers,
it is a predefined set of signals and actions by two systems in order for them to communicate
accurately and as efficiently as possible.

Protocols are not limited to computers, either: everyday life is full of various protocols designed
to make routine tasks easier. When we order at a fast-food restaurant, for instance, the procedure
is fairly routine regardless of which restaurant we are ordering from.

3.2 Example: SMTP

Now, consider the following internet protocol. SMTP (Simple Mail Transfer Protocol) is a protocol
for sending mail to a remote system. Consider the case where the server at toronto.edu (represented
by C) is sending mail to sf.com (represented by S).

S: 220 sf.com
C: HELO toronto.edu
S: 250 Hello toronto.edu, pleased to meet you
C: MAIL FROM: jalice@toronto.edu,,
S: 250 alice@toronto.edu. .. Sender ok
C: RCPT TO:jbob@sf.com;,
S: 250 bob@sf.com Recipient ok
C: DATA
S: 354 Enter Mail, end with “.” on a line by itself
C: How are you?
C: See you soon.
C:.
SS 250 Message accepted for delivery
C: QUIT
S: 221 sf.com closing connection

The above listing shows an example of a protocol, beginning to end. Notice that both parties
have clear roles and expectations, and the procedure allows the required transaction to take place.
In fact, this particular protocol resembles a conversation in a way.

It may seem like protocols were developed for computers, but it should be noted that protocols
are used in our daily lives without realizing it. Consider the action of asking for change, ordering
at a restaurant, or driving in traffic; each of these actions have protocols which are followed (or
hopefully followed in the case of driving) in order to achieve the desired result. In human interaction
a protocol means that both parties have an expected action or response to the other in order to
reach a certain goal.

For example, when someone asks for the time, it’s generally expected that they attract the
individual’s attention first (with an “excuse me” or equivalent), followed by an acknowledgment
by the other person (“yes”). If the acknowledgment occurs, the asker then asks for the time (“do
you have the time?”) whereupon the other person provides the time, or says they do not know
the time. This simple exchange is an example of a protocol that is quite similar to a networking
protocol.



3.3 Protocols and networking

Protocols have since the beginning of history. Therefore, it only makes sense that the same principles
used in human protocols have been extended to networking. We call these protocols distributed
protocols, and they will be discussed in the next section, including the special considerations needed
to apply a protocol for a networking situation.

4 Distributed protocols

A distributed protocol is a protocol involving two (or more) computers on a network. Such a
protocol is designed in order to successfully achieve a goal, generally being some form of data
transfer.

4.1 Difficulties with communication

With recent computer systems, communication between systems is relatively simple. As such, it
might not be apparent that beneath the applications lies a complicated series of communications
between the two computers. The reality is that structured communication between systems where
information can be delayed for any length of time or even lost is a complicated process.

4.2 Example: the two-army problem

To illustrate the complexity of communication, consider the two-army problem. The example below
shows how complicated even a simple goal can be once the paths of communication are uncertain.

4.2.1 The situation

Consider the following situation: two armies, represented by A and B, are at war. Through skillful
maneuvering, army A has set itself up so that it is split in half, each half on either side of army B.
Army A knows that it can defeat army B, but only if both halves of army A strike army B at the
same time.

4.2.2 The goal

The commander of army A is in one half, and decides it would be best to attack at exactly 6 a.m.
in order to win. It is possible that the message may not make it to the other half of the army,
so a confirmation must be sent to be sure. The commander of A, knowing that both sides must
attack at the same time (or else army A will definitely fail) also reasons that both sides must be
completely sure that the other side knows of the attack.

4.2.3 The question: can this be done?

Initially, this seems to be a simple problem, but closer examination will reveal otherwise. To recap,
army A is cut into halves A; and As, and both must be sure the other side is attacking. A,
planning the attack, sends a message to attack, but will not attack itself unless a confirmation
message is returned, since it cannot be sure whether or not As has received the message.

Now, consider what happens if Ao receives the attack message. A, knows that A; will not
attack unless it receives confirmation, so it will try and send a messenger back to A;.



Awaiting

Awaiting o
rders

Confirmation

Orders
Received:

Awaiting
Confirmation

Awaiting
Confirmation

“Confirhed: will attack at 6"

Figure 4: Two army problem, step 2: As confirms the message

Now, the only way for Ay to be sure that A; received the confirmation (and therefore attack)
is to have A; now send a confirmation of the confirmation back to Ay, and requiring in return a
confirmation from As...

Orders
Awaiting Received:
Confirmation of

Awaiting
Confirmation Confirmation

"Conirmation confirmed"

Figure 5: Two army problem, step 3: A; has to confirm the confirmation, and things begin to look
bad ...

4.2.4 TImplications

It should become clear that the above method of planning an attack does not allow for a sure
method of confirmation. In fact, it has been proven that the above problem cannot be solved.
What makes the above example even more striking is how such a situation can translate to many
instances in real networking.

The problem at the heart of this situation is one of synchronization, that is, having both parts
A; and As change states at the same time when the medium between the two does not allow for
guaranteed communication. Imagine that the state of attacking is 1 and the state of not attacking
is 0. In the two-army problem, the desired result is having both sides enter state 1 at the same
time. Since both sides require confirmation that the other side is also in state 1, the two sides will
never enter state 1 because the other side will always be waiting for a response while in state 0.



4.3 Networking considerations

On a network, like in the two-army problem, data can be lost. Additionally, data can be corrupted.
Additionally, most network applications send out multiple pieces of data; if one piece is delayed, it
may arrive out of sequence and the receiver must account for this.

All of these considerations mean that networks must account for such uncertainties when sending
and receiving data. These distributed protocols are not only a consideration of the end systems,
but of each of the switches along the way.

4.4 Conclusions

The example of the two-army problem should make it clear that communication and uncertainty
can make protocols and services tricky. Subsequent lectures will explore some simple protocols for
sending data, as well as the advantages and disadvantages of each.



