1 ARQ: Retransmission Strategies

We discussed hierarchical layering as a form of modularity that depicts the data network design in an
abstract way. Each layer in the architecture regards the next lower layer a black box which provides
a virtual communication channel: peer processes in a given layer exchange messages (Protocol Data
Units) using the (communication) service provided by lower layer black box (see Figure 1).

[] []| wetiae

i i

vl vl

N layer

Figure 1: One peer module communicates with its peer at N+1 layer by placing a message into N
layer black box communication system

In this section, we discuss how we can design a protocol that provides a reliable data transfer
(service) to the next higher layer. We request that the protocol ensures that packets are delivered
in order, and released once, and only once, and without errors to the next higher layer. What
complicates the design of such a protocol is the fact that the lower layer may provide a unreliable
service; that is packets maybe lost or delivered with errors. An example of such a situation is
TCP/IP: TCP is implemented on the top of IP which provides a unreliable data transfer, but
provides a reliable transfer to protocols in the application layers (such as SMTP) (see Figure 2).
How to design such a protocol is the topic of this section.

[SMTP j N+2 layer
| T

[TCP } N+1 layer
l |

[IP } N layer

Figure 2: TCP is implemented on the top of IP which provides a unreliable data transfer, but
provides a reliable transfer to protocols in the application layers (such as SMTP)

2 Stop-and-Wait ARQ Service

In an ideal world, packets (data units) exchanged between peer process would always be delivered
without errors and within a bounded delay (see Figure 3).

next higher layer

ALV_/

Jm 2] E (4 : ‘
A B S A |

next higher layer RaVed
propagation
delay

packet

Figure 3: “Ideal world”: Every packet is delivered without errors and within a bounded delay.

Unfortunately, when the lower layer provides a unreliable service, packets can be lost, arbitrarily
delayed, or corrupted by bit errors (see Figure 4). Thus to obtain a reliable service, we have to
design a protocol on the top of such an unreliable service that ensures that packets are delivered in
order, and each packet is delivered once, and only once, and without errors. We make the following

assumptions.
xR N - I v
NESN
B l/ \L t

long delay
error—free errort

Figure 4: When the lower layer provides a unreliable service, then packets can be lost, arbitrarily
delayed, or corrupted by bit errors

e All packets with error are detected
e Delay can be arbitrarily long
e Some packets maybe lost

e Packets that arrive are in the same order

Question to the reader: Are those assumptions always realistic?
In addition, we only consider unidirectional data transfer. The bidirectional case is conceptually
not more difficult, but much more tedious to explain.

2.1 A First Approach

Consider data communication between two peer processes A (sender) and B (receiver). The follow-
ing protocol seems to be provide a reliable service. B acknowledges received packet received from
A: when B receives an error-free packet from A, then B sends an positive acknowledgement(called
ACK) to A - when B receives a packet with an error, then it sends a negative acknowledge (called
NAK) back to A. The sender A resends (retransmits) each packet until it receives a positive ac-
knowledgment form B; only then A starts to send its next packet. In addition, A also resends a
packet when it doesn’t receive a ACK or NAK within a time-out period. This is to account for the
fact that a packet might get lost (see Figure 5).

AVAVAYA
: L] L] L t

Figure 5: The sender A resends (retransmits) each packet until it receives a positive acknowledgment
form B; only then A starts to send the next packet.

We illustrate this protocol using a few scenarios (see Figure 6).

1. “Ideal” Scenario: Assume that all packets, ACK’s, and NAK’s, are received without errors
and within a bounded delay. When B receives an error-free packet, it sends a ACK to A and
releases the packet to the next higher layer. Once A receives the ACK from B, it sends the
next packet; and so on.

2. Error: Assume that a packet, ACK, or NAK, is corrupted by a bit error. In all these cases,
A will detect the error and resends the packet.

3. Loss of a packet, ACK, or NAK: Assume that a packet, ACK, or NAK is lost. In this case,
a time-out will prompt A to resends the old packet.

The scenarios seem to suggest that the protocol is correct; however, there is a problem with the
protocol. Consider the situation where the ACK from the receiver is delayed causing the sender A
to time-out and resend the same package. In this case, B can not distinguish whether the second

N]] 1 ..
A
B OO N t

Figure 6:

. H out ’—l t

time out for A < ack time

Is this new package?

Figure 7:

Figure 8: A sequence number SN is used to uniquely identify each packet.

transmission is a new package or not (see Figure 7). If B decides that it is a new packet and releases
the packet to the next higher layer, then the constraint that each packet has to be delivered once
and only once is violated.

2.2 The Stop-and-Wait Protocol

To avoid this, we can introduce sequence numbers (SN) which are included in the header of packets
sent from A to B. Each packet has a unique sequence number and A increases the sequence number
by one whenever a new packet is sent (see Figure 8).

However, even introducing sequence numbers does not entirely solve the problems of the above
protocol. For instance, consider the situation where A sends packet twice due to a time-out. Assume
that both packets arrive error-free and B sends twice a ACK. After receiving the first ACK, A sends
the next packet in sequence, and then on receiving the second ACK, could interpret that as an
ACK for the new packet, potentially causing a failure of the protocol (see Figure 9).

To overcome this problem, the receiver B, instead of returning a ACK or a NAK, should return
the number (RN) of the next packet awaited (see Figure 10) . An equivalent convention would be
to return the number of packet just accepted, but in practice this convention is not customary. B
can request this next awaited packet upon the receipt of each packet, at periodic intervals, or at
an arbitrary selection of times.

This last protocol is called Stop-and-Wait ARQ (Automatic Repeat reQuest). It is defined as
follows.

time

’—‘ out ’—‘

X%\

Figure 9: The second ACK received at A is interpreted as a ACK for packet 1; consequently, packet
1 will never be received at B

time
out

\XY\/

Figure 10: Instead of returning a ACK or a NAK, B returns the number (RN) of the next packet
awaited

The algorithm at A for A-to-B transmission:

1. Set the integer variable SN to 0

2. Accept a packet from the next higher layer at A; if no packet is available, wait until it is;
assign number SN to the new packet.

3. Transmit the SNth packet containing SN in the sequence number field.

4. If an error-free packet is received from B containing a RN greater that SN, increase SN to
RN and go to step 2. If no such packet is received within some finite delay, go to step 3.

The algorithm at B for A-to-B transmission:

1. Set the integer variable RN to 0 and the repeat steps 2 and 3 forever.

2. Whenever an error-free packet is received from A containing a sequence number SN equal to
RN, release the received packet to the higher layer and increment RN.

3. An arbitrary times, but within bounded delay after receiving any error-free data packet from
A, transmit a packet to A containing RN in the request number field.

time

N s L B LT

M t

M

| ®

n

Figure 11: Proof of stop-and-wait ARQ

Can we verify that this protocol is indeed correct? Here, we give only a rough sketch of a the
correctness proof for Stop-and-Wait ARQ. The proof involves two aspects: safety and liveness.

1. Safety: A protocol is safe if it never produces an incorrect result. In our context, this means
it never releases a packet out of the correct order to the higher layer. To proof safety, it is
sufficient to show that for the diagram in Figure 11 we have that ¢; < t9 < t3, where the
packet n is transmitted at ¢;, the packet n is received at ¢, and the sequence number is
increased to n+1 at t3. If 1 < {2 < t3, the packet n+1 is transmitted only after packet n has
been received; this guarantees safety.

2. Liveness: A protocol is live if it produces forever results (no deadlock). To proof liveness,
one has to show that the time difference t3 — ¢; is finite. This guarantees that each packet is
eventually sent and received (within a finite delay). A necessary condition for liveness is that
the probability pg that a packet, or ACK, is received without an error is positive (pg > 0).
This excludes the case of a “broken pipe”.

K
(o G

o(i0 (i)

Figure 12: State transition diagram for modulo 2.

(OO)attl (ll)att3

n+1 n+?

¢mnag
n

Figure 13: Trajectory of the state values for modulo 2.

3 Implementation Issues

In stop-and-wait ARQ, the sequence number can potentially become arbitrarily large. In order to
avoid using a very large field (header), their values should be sent using a modulus m. In this case,
each sequence and request number can be represented with a fixed number of bits, namely loga(m)
bits. Given our assumption that packets travel in order, it turns out that modulus 2 is sufficient.

Figure 12 illustrates that modulo 2 is sufficient using a state diagram, where a state is identified
by the corresponding sequence and request numbers (SN,RN). The possible states are (0,0), (0,1),
(1,1), (1,0).

Initially, the combined state of A and B is (0,0). When the packet 0 is received without error,
the RN at B changes to 1, yielding (0,1). When A receives this new RN value, the new state is
(1,1). When the packet 1 is received at B, the RN at B changes to 0 and the new state is (1,0).
Finally, when A receives the request RN=0, then the combined state is becomes again (0,0). From
the state transition diagram, we can infer that the protocol is safe. A starts sending an packet with
an even number only when the previous packet with an odd number has been received at B and
released to the next higher layer. B releases each packet in correct order and once, and only once,
to the higher layer (see Figure 13).

Note that the combined state is known to B only at the instant when the transition from (0,0) to
(0,1), or the transition from (1,1) to (1,0), occurs. Similarly, the combined state is known to A only
at the instant when the transition from (0,1) to (1,1), or from (1,0) to (0,0), occurs. This means

S ‘s+1{

| header | data(packet) [CRC |

SN=sequence number
RN=request number

\ | sN [RN [——-

Which packet contains acknowledgment for n, s or s+1?

Figure 14: ”Piggyback”: Packets carry both a sequence SN and request number RN in the header.

that the combined state is never known to both A and B at the same time, and it is frequently
unknown to both. But still, the protocol is correct, i.e. the sender A knows when it can start to
send a new packet and B knows when a packet can be released to the next higher layer.

This situation here is very similar to that of three army problem. Here however, the protocol
does not deadlock (is live) even though the combined state is never known to both processes at the
same time instant. In the three army problem, it is impossible to coordinate the attack because
the combined state has to be known jointly to both processes.

In the case of a bidirectional communication (B also send packets to A), packets sent from
B to A can carry the request numbers ”piggybacked” in the headers of the data to be sent (see
Figure 14). Notice that when the packet is received at B, the acknowledgment for that packet is
not sent back immediately, but only when B starts to transmit a new packet. In the Figure 14,
when the packet n is received, then the acknowledgment is not sent back with packet s but until
the next packet s+1. Why is this so?

There are a few additional issues that have to be addressed when implementing stop-and-wait
ARQ, which we will cover when we discuss TCP.

e The two peer processes must agree to a starting ”state” - in this case the first sequence
number to be used - and must maintain that state as the protocol operates.

e Setting the timeout parameter is a trade-off between not requiring too many retransmissions
and incurring long delays when packets are lost.

4 Go-Back n ARQ

Although Stop-and-Wait ARQ is simple, safe and live, it is not efficient.

idle m

VAN /

During the time interval when the sender A waits for a ACK, A could send some subsequent
packets in order to achieve higher throughput.

Go-Back n ARQ allows A to send m consecutive packets before hearing the first ACK from
the receiver. As in Stop-and-Wait ARQ, sequence (SN) and request numbers (RN) are used.
In addition, the sender maintains a window of size n indicating the range of packets that A is
allowed to send. The window is initialized to [0...n — 1] and A can send packet 0 to n — 1. As a
acknowledgements received, this window slides upward; thus Go-Back n protocols are often called
sliding windows ARQ protocols.

LU EEL ISR

Window size n

1 1 0/

Already ACK'd Useable, not yet sent
Sent, not yet ACK’d Not useable

Go-Back n algorithm for sender A and receiver B:

Sender A:
(1) Set SNyin and SNyua, to 0,
(2) Repeat steps (3)-(5) forever, in any order.
(3) If SNypaz < SNpin + n and a packet is available from the higher layer, accept that packet,
assign number SN, to it, and increment SNp,q;-
4) If a request number RN > SN,,;, arrives from B, increase SNy, to RN.
(5) If SNpin < SNper and no packet is currently in transmission, transmit a packet SN, where
SNpin < SN < SNpaz- At most a bounded delay is allowed between successive transmissions of
packet SNy, over intervals when SN,,;, does not change.

Receiver B:

(1) Set RN to 0, repeat steps (2) and (3) forever.

(2) When an error-free packet SN arrives from A, if SN = RN, release this packet to the higher
layer and increment RN.

(3) Within bounded delay after an error-free packet is received, transmit request number RN to A.

10

Below we consider a few scenarios for the Go-Back n protocol.

Example 1. An ideal scenario of Go-Back n ARQ (n = 6).

[0,5] [1,6][2,7][3,8][4.9]
ASN‘O‘1‘2‘3‘4‘5‘6‘7‘ t

B

RN \ 0‘0‘1‘2‘3‘4‘5‘6‘

NREREN

0 1 2 3 4 5 6

This scenario is “ideal” in the sense that:
e All packets are received error-free.

e ACKs always arrive back to sender “in time” — before sender’s window is exhausted and
resending is triggered.

The sender A starts by transmitting packet 0. B receives packet 0 error-free, releases it to the
higher layer and sends an acknowledgement back to A. After sending packet 0, A continues sending
the successive packets. Before packet 5 is sent, the acknowledgement for packet 0 arrived from
B error-free, so A moves its window from [0, 5] to [1, 6]. Then A starts sending packet 5, during
which the acknowledgement for packet 1 arrives, and A adjusts its window to [2, 7]. As this scenario
continues, A keeps sending new packets to B; each packet gets through the link correctly; B releases
the packets in order and sends corresponding acknowledgements back to A, and A moves its window
towards higher numbers upon receiving the acknowledgements. As a result, channel is fully utilized
(Stop-and-Wait ARQ won’t achieve this).

Note that packet 0 arrives at B when B is sending its second packet to A. The customary of
piggybacking acknowledgements (RN numbers) is to frame them at the beginning of a packet.
Hence it is too late to piggyback the ACK for packet 0 on the second packet from B to Aj; it will
be piggybacked on the third packet.

11

Example 2. Go-Back n ARQ with data packets errors (n = 6).

[0,5] ‘[16] \[27]
aSvjol1[2]3]a] 56 [1]2

MWWW/

0‘0‘1‘1‘1‘1‘1‘1 1
12 3

In this example, we will examine the behavior of Go-Back n when a data packet from the
sender is not received correctly. As in Example 1, packet 0 arrives from A to B error-free, and B
acknowledges this to A when it sends its third packet to A. However, packet 1 is corrupted /lost on its
way to B. Hence in the following packets from B to A, B keeps asking for packet 1 (acknowledging
packet 0). Again the ACK for packet 0 arrives at A when A is sending packet 4. A moves its
window from [0, 5] to [1, 6] and continues sending packets 4, 5 and 6. During this period, A does
not receive any new ACKs. Hence after packet 6 is sent, A’s window is exhausted. A times out and
starts resending from packet 1. This time packet 1 arrives at B error-free. The subsequent steps
are similar to those in Example 1. Note that although packets 2-6 arrive at B error-free at the first
time, they are still resent.

12

Example 3. Go-Back n ARQ with ACK errors (n = 6).

[08] 27 49510
afo[1]2]a]4]s]6]7]e] !

RN ‘0‘0‘1‘2‘3‘4‘5‘6

TTTTI0T]

0 1 2 3 4 5 6

:

In the figure above, all data packets from A to B are error-free, but some ACKs from B to A are

corrupted/lost. For instance, the ACK for packet 0 is lost. Therefore B does not receive this ACK
during its transmission of packet 4, and its window remains as [0, 5], until the ACK for packet 1
arrives error-free when it is sending packet 5. In Go-Back n ARQ, the ACK for packet k effectively
acknowledges all packets with sequence numbers less than or equal to k. Hence upon receiving the
ACK for packet 1, A knows that both packet 0 and packet 1 have been successfully received, and
adjusts its window from [0, 5] to [2, 7]. When A finishes sending packet 5, it is now two packets
away from the window border, so it continues to send packet 6. If the ACK for packet 1 was also
lost, A would have exhausted its window after it sends packet 5. Similarly, the loss of the ACK for
packet 2 is remedied by the ACK for packet 3.
This shows that ACK errors are often a less severe problem than data error for Go-Back n ARQ.
An ACK corruption/loss will not have any effect on channel utilization as long as a subsequent
ACK arrives correctly and in time. Of course, if the corrupted/lost ACK message is piggybacked
on a data packet from B to A, then there might be a data packet error at the same time for the
other direction.

05 (18] ‘[611]
asvfofifz]sa[s]e| [1]2

W%X%WM%%%

RN ‘0‘0‘1‘2‘3‘4‘5‘6

0 1 2 3 4 5 6

However, consecutive ACK errors may trigger unnecessary resendings. In the above figure,
packets 0-5 all arrived at B error-free. Packet 0 is successfully acknowledged, while the ACKs for
packets 1-4 are lost. The sender A receives the ACK for packet 0 when it is sending packet 4. It
adjusts its window from [0, 5] to [1, 6] and continue to send packets 5 and 6. During this period,
no ACKs arrive. Therefore when A finishes sending packet 6, its window is exhausted. A times out
and starts resending from packet 1, which is the first unacknowledged packet.

13

Example 4. Go-Back n ARQ with uneven packet sizes (n = 6).

[05]
av[of1]2]a]4]

[2.7]

&)

\:

Assume ACKs are piggybacked. If we have a much larger packet size in one direction than in
the other, problems may arise. In the above figure, no packet is corrupted or lost, but the ACKs
from B to A are delayed by the long packets at B, and fail to arrive in time. For instance, packets
0 and 1 both arrive at B when B is sending its first packet. As explained earlier, it is too late for
B to piggyback the ACK for these two packets on its first packet. So the first ACK from B to A
isn’t sent out until B finishes sending both its first and second packets, which are relatively long.
By the time B’s second packet arrives at A, A has exhausted its window and is in the process of
retransmission.

|
o1
\ 5

<

£

14

How to choose the Go-Back number n?

(1) On one hand, we would like n to be as large as possible. A large n can avoid retransmissions
or delays due to large propagation delay and long frames or errors in the reverse direction.

(2) Congestion control. We discuss in the tutorial that the Go-Back number n (among some
other factors) dictates the data rate at the sender and the number n can be used for congestion
control.

n packets

A ttr tack

Assume there is no packet error. As shown in the figure above, the sender sends out n consecutive
packets, then waits for the ACK to come back before it starts sending the next n packets. Assume
each packet has length 100 bits, the round-trip time is 2 seconds, and the capacity of the link is

100,000 bits/second. Therefore the data transmission rate at the sender will be —i% bits/second.

If there are 200 senders sharing the same link and the link capacity is equally shared among senders,

the following condition —i% < % has to hold in order to avoid link congestion; this implies
100

that the Go-Back number n should not exceed 10.

(3) Flow control In cases where the receiver B is slow (slow connection, slow processing speed),
the sender A should refrain itself from overfeeding B’s receiving buffer. This imposes another
upper-bound on 7.

A B (slow)
O —0

Assume that the buffer at B can hold at most 10 packets. Requiring that n does not exceed 10 will
ensure that A never overfeeds that buffer at B.

15

5 Selective-Repeat ARQ

In Go-Back n ARQ, packets that arrive at the receiver error-free may not be accepted, due
to corruption/loss of earlier packets, and hence have to be transmitted more than once. This
motivates Selective-Repeat ARQ, where the out-of-order packets can be temporarily buffered to
save further transmission, and only packets not correctly received are retransmitted.

In Selective-Repeat ARQ, both the sender and the receiver maintain a sliding window. As in
Go-Back n ARQ, the sender side window dictates how far the sender can go from the first
unacknowledged packet; the left end of the window is the first packet whose ACK has not been
correctly received. The receiver side window dictates which packets may be accepted, namely
packets with sequence numbers from RN to (RN + n — 1); the left end of the window is the first
packet that has not been correctly received.

11 [LNERERRSIEEE | | LS

Window size n

Window size n

i 00 10 0 |

Already ACK'd Useable, not yet sent Out of Order (buffered) .A(.:cep'FabIe
but already ACK'd (within window)
Sent, not yet ACK’d Not useable)
Expected, not yet received Not useable
Window at sender side Window at receiver side

16

Selective Repeat algorithm for sender A and receiver B:

In Selective Repeat, the sender keeps a buffer for storing ACK’s from B that are received
out-of-order (but are within the sender window), and the receiver keeps a buffer for storing
error-free packets from A that are received out-of-order (but are with in the receiver window).

Sender A:

(1) Set SNyin and SNye, to 0,

(2) Repeat steps (3)-(6) forever, in any order.

(3) If SNjpaz < SNpin + n and a packet is available from the higher layer, accept that packet,
assign number SN,,q; to it, and increment SNp,q;-

(4) If a request number RN = SN,;;,+1 arrives from B, increase S Ny, to RN and do the following;:

(a) If the value SNy, + 1 is stored in the buffer, then go to step (b); otherwise quit Step (4).
(b) Delete the value SNy, + 1 from the buffer and increment SN,,;,. Go to step (a)

(5) If a request number RN, SNp,in + 1 < RN < SNpaq, arrives from B and RN is not stored in
the buffer, then store RN in the buffer.

(6) If SNyin < SNpar and no packet is currently in transmission, choose a packet number SN,
SNpin < SN < SNyaz, such that SN + 1 is not yet stored in the buffer, and transmit the SNth
packet. At most a bounded delay is allowed between successive transmissions of packet SNp,ip
over intervals when SN,,;, does not change.

Receiver B:

(1) Set RN and RN, to 0, repeat steps (2), (3) and (4) forever.

(2) When an error-free packet SN = RN,,;, arrives from A, release this packet to the higher layer,
increment RNy, and send an ACK with RN = RN,,;, to A. Then do the following:

(a) If the packet RN, is stored in the buffer go to step (b); otherwise quit Step (2).
(b) Release the packet RN, to the higher layer and increment RN,,;,. Go to step (a).

(3) When an error-free packet SN, Ryin, < SN < RNp,in +n, arrives from A, then within bounded
delay send an ACK with RN = SN + 1 to A. If the packet is not yet stored in the buffer, then
store it in the buffer.

(4) When an error-free packet SN, Ry —n < SN < RNpp, arrives from A, then within bounded
delay send an ACK with RN = SN + 1 to A.

17

Example 5. Selective-Repeat ARQ with data packet error

[0,5] [1,6] [7,12]
SN‘O‘1‘2‘3‘4‘5‘6‘

V%/%/WWMW

RN ‘0‘0‘1‘1‘3‘4‘5‘6
[05] } [16] i[7,12]
0 1-6

This example shows how Selective-ARQ deals with data packet errors. Similar to the scenario in
Example 2, packet 1 is lost on its way to B, while the other packets and ACKs get through correctly.
Since B does not receive packet 1, it will not acknowledge it. However, when the successive packets
arrives at B correctly, B will buffer them and acknowledge them to A instead of discard them and
keep asking for packet 1. When A finishes sending packet 6, it exhausts its window since the ACK
for packet 1 is still not received. A times out and resends packet 1. During this period, ACKs
for packets 4 and 5 arrive, but ACKs for packets 1 and 6 are still not received. Depending on the
specific algorithm, A could now choose to resend either packet 1 or packet 6. In this example we
assume the former. During the second retransmission of packet 1, the ACK for packet 6 arrives.
Then A resends packet 1 for the third time. During the following timing out period, the ACK for
packet 1 finally arrives. So A adjusts its window from [1, 6] to [7, 12] and starts sending packet
7. On the other side, when B receives a correct version of retransmitted packet 1, it accepts that
packet, releases packets 1-6 to the higher layer in order, adjusts its window to [7, 12] and waits for
packets within that range to come.

4. Choosing modulus m in ARQ

In practice, sequence numbers and request numbers cannot keep increasing without bound; rather,
their modular versions with modulus m are used. This way each sequence number and request
number can be represented within a fixed number of bits, namely logs(m) bits. The smaller m is,
the less bits are required. However, we need to be careful about the choice of /m in order to preserve
the correctness of the ARQ algorithms. It turns out that for the three kinds of ARQ algorithms
that we discussed, the following restrictions of m must be satisfied respectively:

e Stop-and-Wait ARQ: m > 2
e Go-Back n ARQ: m > n

e Selective-Repeat ARQ: m > 2n

18

