CSC 358 - Introduction to Computer Networks

Tutorial 6

Topic		
Unslotted Aloha		

Question 1:

In unslotted Aloha (the precursor of slotted Aloha), each node (host), upon receiving a new packet, transmits the packet immediately rather than waiting for a slot boundary (slots play no role in unlotted Aloha). If the transmission times of two packets overlap at all, both packets will be lost (collison). If a packet is involved in a collision, it is retransmitted after a random delay. Assume that all packets have the same length L and the transmission rate of the shared link is R. We rescale time and use T = L/R as the new time unit. Assume that there is an infinite number of nodes (i.e. each node has at most one packet to transmit) and let n be the number of backlogged packets at a given time. The waiting time τ until a backlogged packet is retransmitted is exponentially distributed with probability density $xe^{-\tau x}$, where the parameter x is the retransmission attempt rate. The aggregated arrival rate (over all nodes) of new packets to the system form a Poisson process with rate λ packet per unit time.

- (a) Given that there n backlogged packets at time t_0 and the system is idle at time t_0 , what is the probabilith that there is no transmission attempt (by a new packets or a backlogged packet) in the interval $[t_0, t_0 + t), t > 0$?
- (b) Let t_k be the time of the kth transmission attempt (by a new packet or a backlogged packet). For simplicity, assume that both at time t_k and t_{k+1} , there are n backlogged packets. What is the probability that the k+1th transmission attempt is successful?
- (c) Assume that there are n backlogged packets, what is the throughput, i.e. the rate (of packets per unit time) of successful transmisted packets?
- (d) What is the maximal throughput that we can achieve?
- (e) What is the optimal choice for the retransmission attempt rate x?
- (f) In (e), you saw that the choice for the retransmission attempt rate x depends on n and λ . B ut a node in unslotted Aloha will not know n and λ . Can you come up with

a simple heuristic for how to dynamically change x to emulate the optimal choice for the retransmission attempt rate?					