CSC 358 - Introduction to Computer Networks

Solutions Tutorial 5

Question 1

Consider a $M / M / 1$ queue, with a packet arrival rate λ and service rate μ such that $\rho=\frac{\lambda}{\mu}<1$.
(a) Assume that a new packet joins the queue and finds already n packets in the system (either waiting in the queue or in service). As a function of $n, n=0,1,2, \ldots$, what is the expected waiting time of the new packet?

Recall that under the discrete-time model that we use, the service time of a packet is geometrically distributed, i.e. the probability that the service times is equal to k time slots of lenght δ is equal to

$$
(1-\mu \delta)^{k-1} \mu \delta, \quad k=1,2, \ldots
$$

Therefore, the expected number of time slots of serivce of a packet is equal to

$$
\frac{1}{\mu \delta} \delta=\frac{1}{\mu}
$$

Let K be the random variable, indicating the number of packets that are already in the system when the new packet arrives. Note that the new packet has to wait until the K packets finish their service (queueing delay) and then has to finish its own service until it leaves the system (transmission delay). As the expected service time of a packet is equal to $\frac{1}{\mu}$, we have

$$
E[T \mid K=n]=\frac{1}{\mu}(n+1) .
$$

(b) For a $M / M / 1$, the steady-state probability that n packets are in the system is equal to

$$
p_{n}=(1-\rho) \rho^{n}, \quad n=0,1,2, \ldots .,
$$

Using the above equation and the results of (a), compute the expected waiting time of a packet.

We have that

$$
E[T]=\sum_{n=0}^{\infty} E[T \mid K=n] p_{n}=\sum_{n=0}^{\infty} \frac{1}{\mu}(n+1) p_{n},
$$

or

$$
E[T]=\frac{1}{\mu}+\frac{1}{\mu} \sum_{n=0}^{\infty} n p_{n}=\frac{1}{\mu}+\frac{1}{\mu} N .
$$

Using the result that

$$
N=\frac{\rho}{1-\rho},
$$

we obtain

$$
E[T]=\frac{1}{\mu}\left(1+\frac{\rho}{1-\rho}\right)=\frac{1}{\mu} \frac{1}{1-\rho}=\frac{1}{\mu-\lambda} .
$$

Question 2

Consider the $M / M / 1$ that we discussed in class and let $p_{n}, n=0,1,2, \ldots$, be the steadystate probability that n packets are in the system. Furthermore, let A be the event that less than n_{0} packets are in the system, and let B be the event that the number of packets in the system is equal, or larger, than n_{0}.
(a) What is the probability of event A in steady-state, i.e. express $P\{A\}$ in terms of p_{n}, $n=0,1,2, \ldots$.

$$
P\{A\}=\sum_{n=0}^{n_{0}-1} p_{n} .
$$

(b) What is the probability of event B in steady-state, i.e. express $P\{B\}$ in terms of p_{n}, $n=0,1,2, \ldots$.

$$
P\{B\}=\sum_{n=n_{0}}^{\infty} p_{n}=1-P\{A\} .
$$

(c) Let $p_{n}(t)$ be the probability that n packets are in the system at time t, and let $A(t)$ be the event that at time t less than n_{0} packets are in the system. For a very small δ, compute the probability $P\{A(t+\delta)\}$ as a function of $p_{n}(t), n=0,1,2, \ldots$, and $P\{A(t)\}$.

Using conditional probabilities, we obtain

$$
\begin{aligned}
P\{A(t+\delta)\} & =P\{A(t+\delta) \mid A(t)\} P\{A(t)\}+P\{A(t+\delta) \mid B(t)\} P\{B(t)\} \\
& =(1-P\{B(t+\delta) \mid A(t)\}) P\{A(t)\}+P\{A(t+\delta) \mid B(t)\} P\{B(t)\}
\end{aligned}
$$

Note that

$$
P\{B(t+\delta) \mid A(t)\}=\frac{P\{B(t+\delta) \cap A(t)\}}{P\{A(t)\}}
$$

and

$$
P\{B(t+\delta) \cap A(t)\}=p_{n_{0}-1}(t) \lambda \delta .
$$

Similarly, we have that

$$
P\{A(t+\delta) \mid B(t)\}=\frac{P\{A(t+\delta) \cap B(t)\}}{P\{B(t)\}}
$$

and

$$
P\{A(t+\delta) \cap B(t)\}=p_{n_{0}}(t) \mu \delta .
$$

Using these results, it follows that

$$
P\{A(t+\delta)\}=P\{A(t)\}-p_{n_{0}-1}(t) \lambda \delta+p_{n_{0}}(t) \mu \delta .
$$

(d) Derive a condition on the probabilities $p_{n}(t), n=0,1,2, \ldots$, which implies that $P\{A(t+\delta)\}=P\{A(t)\}$ The condition is that

$$
p_{n_{0}-1}(t) \lambda \delta=p_{n_{0}}(t) \mu \delta
$$

(e) How can we use the result of (d) to derive the steady-state probabilities $p_{n}, n=$ $0,1,2, \ldots$? We used the above condition to derive that in steady-state we have that

$$
p_{n} \lambda \delta=p_{n+1} \mu \delta, \quad n=0,1,2, \ldots
$$

Question 3

Consider a transmission system (queue) that can hold at most one packet (the packet that is in service), i.e. there is no buffer and a new packet either goes directly into service or is dropped.
The system receives Poisson packet traffic from two other nodes, 1 and 2, at rates λ_{1} and λ_{2}, respectively. The service times of the packets are independently, exponentially distributed with a mean $\frac{1}{\mu}$ for packets from node 1 , and $\frac{1}{2 \mu}$ for packets from source 2 .

(a) What is the probability that a packet that gets accepted into service is a packet from node 1 ?

$$
\frac{\lambda_{1}}{\lambda_{2}+\lambda_{1}}
$$

(b) Compute the steady-state probabilities P_{1}, and P_{2}, that the system serves a packet from node 1 , and node 2 , respectively. Let the state 0,1 , and 2 , indicate that the

case that we find in the system no packet, one packet of source 1, and one packet of source 2 , respectively.
The above figure then gives the state transition diagram, where $\lambda=\lambda_{1}+\lambda_{2}$. If follows that

$$
\begin{aligned}
& P_{0} \lambda_{1} \delta=\mu \delta P_{1} \\
& P_{0} \lambda_{2} \delta=2 \mu \delta P_{2},
\end{aligned}
$$

$$
\begin{aligned}
& P_{1}=\frac{\lambda_{1}}{\mu} P_{0} \\
& P_{2}=\frac{\lambda_{2}}{2 \mu} P_{0} .
\end{aligned}
$$

Using the condition that

$$
P_{0}+P_{1}+P_{2}=1,
$$

we obtain that

$$
P_{0}\left(1+\frac{\lambda_{1}}{\mu}+\frac{\lambda_{2}}{2 \mu}\right)=1 .
$$

Setting

$$
\bar{\rho}=\frac{2 \lambda_{1}+\lambda_{2}}{2 \mu}
$$

we get

$$
P_{0}=\frac{1}{1+\bar{\rho}},
$$

and

$$
\begin{aligned}
& P_{1}=\rho_{1} \frac{1}{1+\bar{\rho}} \\
& P_{2}=\rho_{2} \frac{1}{1+\bar{\rho}}
\end{aligned}
$$

where

$$
\rho_{1}=\frac{\lambda_{1}}{\mu}
$$

and

$$
\rho_{2}=\frac{\lambda_{2}}{2 \mu} .
$$

