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Question 1
Consider a M/M/1 queue, with a packet arrival rate λ and service rate µ such that
ρ = λ

µ
< 1.

(a) Assume that a new packet joins the queue and finds already n packets in the system
(either waiting in the queue or in service). As a function of n, n = 0, 1, 2, ..., what is
the expected waiting time of the new packet?

Recall that under the discrete-time model that we use, the service time of a packet
is geometrically distributed, i.e. the probability that the service times is equal to k
time slots of lenght δ is equal to

(1− µδ)k−1µδ, k = 1, 2, ....

Therefore, the expected number of time slots of serivce of a packet is equal to

1

µδ
δ =

1

µ
.

Let K be the random variable, indicating the number of packets that are already in
the system when the new packet arrives. Note that the new packet has to wait until
the K packets finish their service (queueing delay) and then has to finish its own
service until it leaves the system (transmission delay). As the expected service time
of a packet is equal to 1

µ
, we have

E[T | K = n] =
1

µ
(n + 1).

(b) For a M/M/1, the steady-state probability that n packets are in the system is equal
to

pn = (1− ρ)ρn, n = 0, 1, 2, ...., .

Using the above equation and the results of (a), compute the expected waiting time
of a packet.

We have that

E[T ] =
∞∑

n=0

E[T | K = n]pn =
∞∑

n=0

1

µ
(n + 1)pn,

or

E[T ] =
1

µ
+

1

µ

∞∑

n=0

npn =
1

µ
+

1

µ
N.
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Using the result that

N =
ρ

1− ρ
,

we obtain

E[T ] =
1

µ

(
1 +

ρ

1− ρ
) =

1

µ

1

1− ρ
=

1

µ− λ
.
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Question 2
Consider the M/M/1 that we discussed in class and let pn, n = 0, 1, 2, ...., be the steady-
state probability that n packets are in the system. Furthermore, let A be the event that
less than n0 packets are in the system, and let B be the event that the number of packets
in the system is equal, or larger, than n0.

(a) What is the probability of event A in steady-state, i.e. express P{A} in terms of pn,
n = 0, 1, 2, ....

P{A} =
n0−1∑

n=0

pn.

(b) What is the probability of event B in steady-state, i.e. express P{B} in terms of pn,
n = 0, 1, 2, ....

P{B} =
∞∑

n=n0

pn = 1− P{A}.

(c) Let pn(t) be the probability that n packets are in the system at time t, and let A(t)
be the event that at time t less than n0 packets are in the system. For a very small
δ, compute the probability P{A(t + δ)} as a function of pn(t), n = 0, 1, 2, ..., and
P{A(t)}.

Using conditional probabilities, we obtain

P{A(t + δ)} = P{A(t + δ) | A(t)}P{A(t)}+ P{A(t + δ) | B(t)}P{B(t)}
=

(
1− P{B(t + δ) | A(t)}

)
P{A(t)}+ P{A(t + δ) | B(t)}P{B(t)}

Note that

P{B(t + δ) | A(t)} =
P{B(t + δ) ∩ A(t)}

P{A(t)}
and

P{B(t + δ) ∩ A(t)} = pn0−1(t)λδ.

Similarly, we have that

P{A(t + δ) | B(t)} =
P{A(t + δ) ∩B(t)}

P{B(t)}
and

P{A(t + δ) ∩B(t)} = pn0(t)µδ.

Using these results, it follows that

P{A(t + δ)} = P{A(t)} − pn0−1(t)λδ + pn0(t)µδ.
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(d) Derive a condition on the probabilities pn(t), n = 0, 1, 2, ..., which implies that
P{A(t + δ)} = P{A(t)} The condition is that

pn0−1(t)λδ = pn0(t)µδ.

(e) How can we use the result of (d) to derive the steady-state probabilities pn, n =
0, 1, 2, ...? We used the above condition to derive that in steady-state we have that

pnλδ = pn+1µδ, n = 0, 1, 2, ....
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Question 3

Consider a transmission system (queue) that can hold at most one packet (the packet that
is in service), i.e. there is no buffer and a new packet either goes directly into service or is
dropped.
The system receives Poisson packet traffic from two other nodes, 1 and 2, at rates λ1

and λ2, respectively. The service times of the packets are independently, exponentially
distributed with a mean 1

µ
for packets from node 1, and 1

2µ
for packets from source 2.

λ 1

λ 2

(a) What is the probability that a packet that gets accepted into service is a packet from
node 1?

λ1

λ2 + λ1

(b) Compute the steady-state probabilities P1, and P2, that the system serves a packet
from node 1, and node 2, respectively. Let the state 0,1, and 2, indicate that the

λ  δ1

λ  δ2

0

1

2
1−2µδ

1−µδ

1−λδ

2µδ

µ  δ

case that we find in the system no packet, one packet of source 1, and one packet of
source 2, respectively.
The above figure then gives the state transition diagram, where λ = λ1 + λ2. If
follows that

P0λ1δ = µδP1

P0λ2δ = 2µδP2,
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or

P1 =
λ1

µ
P0

P2 =
λ2

2µ
P0.

Using the condition that
P0 + P1 + P2 = 1,

we obtain that

P0

(
1 +

λ1

µ
+

λ2

2µ

)
= 1.

Setting

ρ̄ =
2λ1 + λ2

2µ
,

we get

P0 =
1

1 + ρ̄
,

and

P1 = ρ1
1

1 + ρ̄

P2 = ρ2
1

1 + ρ̄

where

ρ1 =
λ1

µ

and

ρ2 =
λ2

2µ
.
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