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Topic

In the course, we will use probabilistic models for packet lengths and packet arrivals. The
goal of this tutorial is to get familiar with these models.

Question 1: Packet Length

The length of data packets can vary in a wide range (some packets are very short and some
packets are very long). To capture this, we model packet lengths as a random variable
with a geometric distribution. That is, the probability that a packet is L bits long is given
by.
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(a) Derive the average packet length, i.e. derive E[L]. We then have
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(b)

Consider a specific packet. Assume that we know that the length of this packet is
larger than [y. Find the probability that the packet is [ bits long, [ > [,.

For [ > [y, we have that
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Why is this the case?

In then follows that for [ > [y, we have
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Note that this implies that the geometric distribution is “memoryless”. What does
this mean?

Derive the expected packet length when we know that L > o, i.e. derive E[L | L >
lo)-

Using part (b), we have that
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Using the result from (b), we then have that
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What is the interpretation of this result?



Question 2: Packet Arrivals
In the course, we will use the following discrete-time model to characterize packet arrivals.

Suppose that time is divided into slots of length A; and consider the following packet
arrival process with rate A:

1. the probability of one packet arriving during a time-slot is equal to AA,.
2. the probability of zero arrival in the interval A; is 1 — AA,.

3. arrivals are memoryless: An arrival (event) in one time interval of length A, is
independent of events in previous intervals.

Using this model, answer the following questions.

(a) Consider a time interval of length kA,. What is the probability that we have n
arrivals in the time interval [0, kA,] for n =0, ..., k7

For 0 < n < k, the probability that we have n arrivals in the time interval [0, kA;] is
given

(i) (AA)™ (1 — AA)F™,

which corresponds to a binomial distribution.

(b) What is the distribution of the time between two successive packet arrivals (inter-
arrival time)?

Let T be the inter-arrival time, then we have that

P(T =t) = (AA)(1 — AA) t>1,

i.e. the inter-arrival time is given by a geometric distribution. why is this the case?



Question 3: Poisson and Exponential Distribution

In this question, we show what happens for the model of Question 2 as we make A; smaller
and smaller, letting it approach 0.

Consider a time interval of fixed length T which is divided into N slots of equal length
Ay = T/N. In each time slot, exactly one new packet arrives with probability AA;, and
no packet arrives with probability 1 — AA,. The probability that two more packets arrive
is equal to 0.

(a) What is the probability P, that n, n =0, 1, ..., N, packets arrive in the time interval
[0, 7).
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(b) Find the probability P, as the number of time slots N approaches infinity (N — 00)

(and the interval A; approaches 0, A; — 0). Hint: Use lim,_,o(1 + ax)g

for N very large, N! ~ (% (Stirling’s approximation).
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We do the analysis without using Stirling’s approximation.
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We then obtain that

which is the Poisson distribution.



(c) Assuming that A; — 0, what is the distribution of the time between two successive
packet arrivals?

Let T be the inter-arrival time. Then using (b), we have that

P(T <t) = P( at least one arrival in the interval [0,t))
= 1— P( no arrivals in the interval [0,t))
= 1—e™, t>0,

i.e. the inter-arrival time is given by an exponential distribution.



