CSC 358 - Introduction to Computer Networks

Solutions for Tutorial 2

Topic

In the course, we will use probabilistic models for packet lengths and packet arrivals. The goal of this tutorial is to get familiar with these models.

Question 1: Packet Length

The length of data packets can vary in a wide range (some packets are very short and some packets are very long). To capture this, we model packet lengths as a random variable with a geometric distribution. That is, the probability that a packet is L bits long is given by.

$$
P(L=l)=\mu(1-\mu)^{l-1}, \quad l \geq 1 .
$$

(a) Derive the average packet length, i.e. derive $E[L]$. We then have

$$
\begin{aligned}
E[L] & =\sum_{l=1}^{\infty} l \mu(1-\mu)^{l-1} \\
& =\mu \frac{d}{d \mu} \sum_{l=1}^{\infty}\left[(-1)(1-\mu)^{l}\right] \\
& =\mu \frac{d}{d \mu}\left[(\mu-1) \sum_{l=1}^{\infty}(1-\mu)^{l-1}\right] \\
& =\mu \frac{d}{d \mu}\left[(\mu-1) \sum_{l=0}^{\infty}(1-\mu)^{l}\right] \\
& =\mu \frac{d}{d \mu}\left[(\mu-1) \frac{1}{\mu}\right]=\mu \frac{d}{d \mu}\left[1-\frac{1}{\mu}\right] \\
& =\mu \frac{1}{\mu^{2}} \\
& =\frac{1}{\mu} .
\end{aligned}
$$

(b) Consider a specific packet. Assume that we know that the length of this packet is larger than l_{0}. Find the probability that the packet is l bits long, $l>l_{0}$.

For $l>l_{0}$, we have that

$$
P\left(L=l \mid L>l_{0}\right)=\frac{P\left(L=l \text { and } L>l_{0}\right)}{P\left(L>l_{0}\right)}=\frac{P(L=l)}{P\left(L>l_{0}\right)} .
$$

Why is this the case?
Note that

$$
P(L=l)=\mu(1-\mu)^{l-1}
$$

and

$$
P\left(L>l_{0}\right)=\sum_{l=l_{0}}^{\infty} \mu(1-\mu)^{l}=(1-\mu)^{l_{0}} \sum_{l=0}^{\infty} \mu(1-\mu)^{l}=(1-\mu)^{l_{0}} .
$$

Why is this the case?
In then follows that for $l>l_{0}$, we have

$$
P\left(L=l \mid L>l_{0}\right)=\frac{P(L=l)}{P\left(L>l_{0}\right)}=\frac{\mu(1-\mu)^{l-1}}{(1-\mu)^{l_{0}}}=\mu(1-\mu)^{l-l_{0}-1} .
$$

Note that this implies that the geometric distribution is "memoryless". What does this mean?
(c) Derive the expected packet length when we know that $L>l_{0}$, i.e. derive $E[L \mid L>$ l_{0}].

Using part (b), we have that

$$
\begin{aligned}
E\left[L \mid L>l_{0}\right] & =\sum_{l=l_{0}+1}^{\infty} l \mu(1-\mu)^{l-l_{0}-1} \\
& =\sum_{l=l_{0}+1}^{\infty}\left(l-l_{0}+l_{0}\right) \mu(1-\mu)^{l-l_{0}-1} \\
& =\sum_{x=1}^{\infty}\left(x+l_{0}\right) \mu(1-\mu)^{x-1} \\
& =\sum_{x=1}^{\infty} x \mu(1-\mu)^{x-1}+\sum_{x=1}^{\infty} l_{0} \mu(1-\mu)^{x-1} \\
& =\sum_{x=1}^{\infty} x \mu(1-\mu)^{x-1}+l_{0} \sum_{x=1}^{\infty} \mu(1-\mu)^{x-1}
\end{aligned}
$$

Using the result from (b), we then have that

$$
E\left[L \mid L>l_{0}\right]=\frac{1}{\mu}+l_{0} .
$$

What is the interpretation of this result?

Question 2: Packet Arrivals

In the course, we will use the following discrete-time model to characterize packet arrivals.
Suppose that time is divided into slots of length Δ_{t} and consider the following packet arrival process with rate λ :

1. the probability of one packet arriving during a time-slot is equal to $\lambda \Delta_{t}$.
2. the probability of zero arrival in the interval Δ_{t} is $1-\lambda \Delta_{t}$.
3. arrivals are memoryless: An arrival (event) in one time interval of length Δ_{t} is independent of events in previous intervals.

Using this model, answer the following questions.
(a) Consider a time interval of length $k \Delta_{t}$. What is the probability that we have n arrivals in the time interval $\left[0, k \Delta_{t}\right]$ for $n=0, \ldots, k$?

For $0 \leq n \leq k$, the probability that we have n arrivals in the time interval $\left[0, k \Delta_{t}\right]$ is given

$$
\binom{k}{n}\left(\lambda \Delta_{t}\right)^{n}\left(1-\lambda \Delta_{t}\right)^{k-n}
$$

which corresponds to a binomial distribution.
(b) What is the distribution of the time between two successive packet arrivals (interarrival time)?

Let T be the inter-arrival time, then we have that

$$
P(T=t)=\left(\lambda \Delta_{t}\right)\left(1-\lambda \Delta_{t}\right)^{t-1}, \quad t \geq 1,
$$

i.e. the inter-arrival time is given by a geometric distribution. why is this the case?

Question 3: Poisson and Exponential Distribution

In this question, we show what happens for the model of Question 2 as we make Δ_{t} smaller and smaller, letting it approach 0 .

Consider a time interval of fixed length T which is divided into N slots of equal length $\Delta_{t}=T / N$. In each time slot, exactly one new packet arrives with probability $\lambda \Delta_{t}$, and no packet arrives with probability $1-\lambda \Delta_{t}$. The probability that two more packets arrive is equal to 0 .
(a) What is the probability P_{n} that $n, n=0,1, \ldots, N$, packets arrive in the time interval $[0, T]$.

$$
P_{n}=\binom{N}{n}\left(\lambda \Delta_{t}\right)^{n}\left(1-\lambda \Delta_{t}\right)^{N-n}, \quad n=0, \ldots, N .
$$

(b) Find the probability P_{n} as the number of time slots N approaches infinity $(N \rightarrow \infty)$ (and the interval Δ_{t} approaches $0, \Delta_{t} \rightarrow 0$). Hint: Use $\lim _{x \rightarrow 0}(1+a x)^{\frac{k}{x}}=e^{a k}$ and for N very large, $N!\approx \frac{(N / e)^{N}}{\sqrt{2 N \pi}}$ (Stirling's approximation).

We do the analysis without using Stirling's approximation.

$$
\begin{aligned}
P_{n} & =\binom{N}{n}\left(\lambda \Delta_{t}\right)^{n}\left(1-\lambda \Delta_{t}\right)^{N-n} \\
& =\frac{N!}{(N-n)!n!}\left(\lambda \frac{T}{N}\right)^{n}\left(1-\lambda \Delta_{t}\right)^{T / \Delta_{t}}\left(1-\lambda \Delta_{t}\right)^{-n} \\
& =\frac{N(N-1) \ldots(N-(n-1))}{N^{n}} \frac{(\lambda T)^{n}}{n!}\left(1-\lambda \Delta_{t}\right)^{T / \Delta_{t}}\left(1-\lambda \Delta_{t}\right)^{-n}
\end{aligned}
$$

For T fixed, as $N \rightarrow \infty$, we have $\Delta_{t}=\frac{T}{N} \rightarrow 0$, and

- $\lim _{\Delta_{t} \rightarrow 0}\left(1-\lambda \Delta_{t}\right)^{-n}=1$
- $\lim _{\Delta_{t} \rightarrow 0}\left(1-\lambda \Delta_{t}\right)^{T / \Delta_{t}}=e^{-\lambda T}$ (Equation for the exponential)
- $\lim _{N \rightarrow \infty} \frac{N(N-1) \ldots(N-(n-1))}{N^{n}}=\lim _{N \rightarrow \infty} 1\left(1-\frac{1}{N}\right)\left(1-\frac{2}{N}\right) \ldots\left(1-\frac{n-1}{N}\right)=1$

We then obtain that

$$
P_{n}=\frac{(\lambda T)^{n}}{n!} e^{-\lambda T}, \quad n=0,1,2, \ldots
$$

which is the Poisson distribution.
(c) Assuming that $\Delta_{t} \rightarrow 0$, what is the distribution of the time between two successive packet arrivals?

Let T be the inter-arrival time. Then using (b), we have that

$$
\begin{aligned}
P(T \leq t) & =P(\text { at least one arrival in the interval }[0, \mathrm{t})) \\
& =1-P(\text { no arrivals in the interval }[0, \mathrm{t})) \\
& =1-e^{-\lambda t}, \quad t>0,
\end{aligned}
$$

i.e. the inter-arrival time is given by an exponential distribution.

