Solutions for Tutorial 1

Topic

In this tutorial, we review some basic concepts of probability theory. These concepts are very important. For example, we will use them when we study Ethernet and Wave-LAN.

Question 1: Consider a communication link which connects A with B, and suppose that A sends to B a file with N bits. During the transmission, each bit is being corrupted independently with a bit error probability p.
(a) What is the probability $P_{t r}$ that the file is received with out an error at B, i.e. no bit is getting corrupted during the transmission?

$$
P_{t r}=(1-p)^{N}
$$

(b) Suppose that B accepts the file when there is no bit error, and otherwise asks A to resend the file. Assume that B can detect perfectly whether a bit got corrupted during the transmission. What is the probability P_{k} that A has to send the file k times to get it accepted by B ?

$$
P_{k}=\left(1-P_{t r}\right)^{k-1} P_{t r}
$$

(c) What is the expected number of times that A has to send the file to get it accepted at B ?

Let random variable T represent the number of times that A has to send the file to get it accepted at B. We have,

$$
E[T]=\sum_{k=1}^{\infty} k P_{k}=\sum_{k=1}^{\infty} k\left(1-P_{t r}\right)^{k-1} P_{t r}=\frac{1}{P_{t r}}
$$

Question 2: Consider a PDA (Personal Digital Assistant) which can send and receive data over a wireless communication link (for example a Wave-LAN). The PDA can be in one out of two possible states: state $S_{\text {off }}$ (when it is not sending/receiving data) and $S_{o n}$ (when it is sending/receiving data). Assume that the PDA changes states at discrete time steps $k=0,1,2,3, \ldots$. When at time k the state of the PDA is equal to $S_{o f f}$, then at time $(k+1)$ it will be in the state $S_{o f f}$ with probability $2 / 3$ and be in the state $S_{o n}$ with probability $1 / 3$. Similarly, when at time k in the state $S_{o n}$, then at time $(k+1)$ it is in state $S_{\text {off }}$ with probability $1 / 3$ and in state $S_{o n}$ with probability $2 / 3$. Assume that at time $k=0$ the PDA is in state $S_{o f f}$.

(a) Assume that at time $k=0$ the PDA is in state $S_{o f f}$. What is the probability that the PDA is still in state $S_{o f f}$ at time $k=1$?

Let $P_{o f f}^{(1)}$ be the probability that at time $k=1$ the PDA is in state $S_{o f f}$. We have,

$$
P_{o f f}^{(1)}=\frac{2}{3}
$$

(b) Assume that at time $k=0$ the PDA is in state $S_{\text {off }}$. Using (a), what is the probability that the PDA is in state $S_{o n}$ at time $k=2,3,4$?

Let $P_{o f f}^{(k)}\left(P_{o n}^{(k)}\right)$ be the probability that the PDA is in state $S_{o f f}\left(S_{o n}\right)$ at time k for $k=0,1,2, \ldots$. From the initial conditions, we have that

$$
P_{o f f}^{(0)}=1 \quad \text { and } \quad P_{o n}^{(0)}=0
$$

For $k=1,2,3, \ldots$, we have that

$$
P_{o f f}^{(k)}=\frac{2}{3} P_{o f f}^{(k-1)}+\frac{1}{3} P_{o n}^{(k-1)},
$$

and

$$
P_{o n}^{(k)}=\frac{1}{3} P_{o f f}^{(k-1)}+\frac{2}{3} P_{o n}^{(k-1)} .
$$

We then obtain

$$
\begin{array}{ll}
P_{o f f}^{(1)}=\frac{2}{3}, & P_{o n}^{(1)}=\frac{1}{3} \\
P_{o f f}^{(2)}=\frac{2}{3} \frac{2}{3}+\frac{1}{3} \frac{1}{3}=\frac{5}{9}, & P_{o n}^{(2)}=\frac{1}{3} \frac{2}{3}+\frac{2}{3} \frac{1}{3}=\frac{4}{9} \\
P_{o f f}^{(3)}=\frac{2}{3} \frac{5}{9}+\frac{1}{3} \frac{4}{9}=\frac{14}{27}, & P_{o n}^{(3)}=\frac{15}{3} \frac{5}{9}+\frac{2}{3} \frac{4}{9}=\frac{13}{27} \\
P_{o f f}^{(4)}=\frac{2}{3} \frac{14}{27}+\frac{1}{3} \frac{13}{27}=\frac{41}{81}, & P_{o n}^{(4)}=\frac{1}{3} \frac{14}{27}+\frac{2}{3} \frac{13}{27}=\frac{40}{81}
\end{array}
$$

(c) Assume that the PDA is at time $k=0$ in state $S_{o f f}$ with probability $P_{o f f}$ and in state $S_{o n}$ with probability $P_{o n}$. Express the probability that the PDA is at time $k=1$ in state $S_{o f f}$, and state $S_{o n}$, as a function of $P_{o f f}$ and $P_{o n}$.

See question (b).
(d) Find initial probabilities $P_{\text {off }}, P_{o n}$ such that the PDA is at time $k=1$ in state $S_{o f f}$, and $S_{o n}$, again with probability $P_{o f f}$, and $P_{o n}$, respectively. What is the interpretation of the probabilities $P_{o f f}$ and $P_{o n}$?

From (b) and (c), we need that

$$
P_{o f f}=\frac{2}{3} P_{o f f}+\frac{1}{3} P_{o n}
$$

and

$$
P_{o n}=\frac{1}{3} P_{o f f}+\frac{2}{3} P_{o n} .
$$

Any solution for this system of equations has the property that

$$
P_{o f f}=P_{o n}
$$

As $P_{o f f}$ and $P_{o n}$ are probabilities, we need that

$$
P_{o f f}+P_{o n}=1
$$

Combining the two conditions above, we obtain that

$$
P_{o f f}=P_{o n}=\frac{1}{2} .
$$

(e) Assume that at time $k=0$ the PDA is in state $S_{o f f}$. Using the result of (d), try to guess that probabilities that the buffer is in state $S_{o n}$ and $S_{o f f}$ after a very long time, i.e. as k approaches infinity.

We have

$$
\lim _{k \rightarrow \infty} P_{o f f}^{(k)}=\frac{1}{2}
$$

and

$$
\lim _{k \rightarrow \infty} P_{o n}^{(k)}=\frac{1}{2}
$$

