- λ : Packet arrival rate (packets/time)
- μ : Service rate (packets/time)
- $\rho=\lambda / \mu$: traffic intensity

We want to know:

- Average Number of Packets in the System
- Average Delay of a Packet (Queueing + Transmission Delay)

- $A(t)$: number of packets that arrived in $[0, t]$
- $B(t)$: number of packets that departed in $[0, t]$
- $N(t)=A(t)-B(t)$: number of packets in the system (in queue and in service) at time t.
- T_{i} : Time spent in the system by the i th arriving packet.
- $N_{t}=\frac{1}{t} \int_{0}^{t} N(\tau) d \tau$: time average number of packets in the system up to time t .
- $N=\lim _{t \rightarrow \infty} N_{t}$: (time) average number of packets in the system.

Outline:

- $\lambda_{t}=\frac{A(t)}{t}$: time average arrival rate over $[0, t]$
- $\lambda=\lim _{t \rightarrow \infty} \lambda_{t}$: steady state arrival rate
- $T_{t}=\frac{\sum_{i=0}^{A(t)} T_{i}}{A(t)}$: average time spent in the system per packet up to time t
- $T=\lim _{t \rightarrow \infty} T_{t}$: steady-state time average packet delay.
- Little's Theorem: $N=\lambda T$
- M/M/1 queue: $N=\sum_{n=0}^{\infty} n p_{n}$,
where p_{n} is the steady-state probability that n packets are in the system.

Examples for Little's Theorem:

- Traffic on a rainy day
- Fast-food restaurants

So far: time average - "I observe the system for a long, long time". Next: ensemble average - "I come back at time t to check on the system"

- $p_{n}(t)$: Probability that n packets are in the system at time t.
- $\bar{N}(t)=\sum_{n=0}^{\infty} n p_{n}(t):$ expected number of packets in the system at time t
- $p_{n}=\lim _{t \rightarrow \infty} p_{n}(t)$: steady-state probability that n packets are in the system
- $\bar{N}=\sum_{n=0}^{\infty} n p_{n}$: steady-state expected number of packets in the system
- \bar{T}_{k} : expected delay of the k th packet.
- $\bar{T}=\lim _{k \rightarrow \infty} \bar{T}_{k}$: expected packet delay.

Ergodic Systems:

$$
N=\bar{N} \quad \text { and } \quad T=\bar{T}
$$

For ergodic systems, Little's formula holds with $N=\bar{N}$ and $T=\bar{T}$, and
with

$$
\lambda=\lim _{t \rightarrow \infty} \frac{\text { Expected number of arrivals in the interval }[0, t]}{t}
$$

M/M/1 Queue

- Customers (packets) arrive according to a Poisson process
- Service time is exponentially distributed

Goal: want to determine the steady-state probability p_{n} that n customers are in the system.

Many Applications

- Call Centers
- Traffic planning
- Requests at a Web server

