• Dec. 8, 2-5pm, GB304

• Closed book

- $\lim_{t \to t} \frac{1}{t}$ • Entire course • Proofs: Chapter 3 and 5 1 **Renewal Process** Assumptions:  $X_1, X_2, \dots$  positive IID r.v.;  $\overline{X} < \infty$ , **Results:** (note that  $0 < \overline{X}$ )  $\lim_{t \to \infty} \frac{N(t)}{t} = \frac{1}{X},$ w.p.1 $\lim_{t \to \infty} \frac{E[N(t)]}{t} = \frac{1}{\bar{X}}$  $lim_{t\to\infty} \left( E[N(t+\delta)] - E[N(t)] \right) = \frac{\delta}{X}, \quad \delta > 0; \text{ (non-arithmetic)}$ 2
- If  $\bar{X} < \infty$  or  $E[R_n] < \infty$ , then

$$\lim_{t \to \infty} \frac{1}{t} \int_0^t R(\tau) d\tau = \frac{E[R_n]}{\bar{X}}, \quad \text{with probability 1.}$$

• If non-arithmetic renewal process and r(z) is directly Rieman integrable, then

$$\lim_{t \to \infty} E[R(t)] = \frac{E[R_n]}{\bar{X}}.$$

• If arithemtic renewal process with span *d*, then

$$\lim_{n \to \infty} E[R(nd)] = \frac{E[R_n]}{\bar{X}}.$$

3

4



• Questions

– Does  $\pi = \pi[P]$  have a probability vector solution?

- Does  $\pi = \pi[P]$  have a unique probability vector solution?

- Is 
$$\lim_{n\to\infty} [P]^n = \begin{bmatrix} \pi_1 & \cdots & \pi_J \\ \vdots & & \vdots \\ \pi_1 & \cdots & \pi_J \end{bmatrix}$$

## Finite State Markov Chain - Answers Markov Chains with Countably Infinite State Spaces • Yes, solution to $\pi = \pi[P]$ always exists • Unique, if and only if there is a single recurrent class (and • $T_{ij}$ : "first passage time from *i* to *j*" possibly many transient classes) - $f_{ij}(n)$ : probability mass function • If there are *r* recurrent classes, then there exist *r* linearly - $F_{ii}(n)$ : probability distribution functionq independent solutions. Classification • For ergodic Markov chain we have $\lim_{n \to \infty} [P]^n = \begin{bmatrix} \pi_1 & \cdots & \pi_J \\ \vdots & & \vdots \\ \pi_1 & \cdots & \pi_J \end{bmatrix}$ - recurrent: state *i* is recurrent if $F_{ii}(\infty) = 1$ \* positive recurrent $E[T_{ii}] < \infty$ \* null recurrent $E[T_{ii}] = \infty$ – transient: state *i* is transient if $F_{ii}(\infty) < 1$ • If there are several multiple recurrent classes $\lim_{n\to\infty} [P]^n$ exists, but rows are not identical. • If there is one or more periodic class then $[P]^n$ does not converge. 5 7 Finite State Markov Chain with Rewards **Renewal Theory** Assume that state j is recurrent and consider the renewal process • Single Recurrent Class: $v(n) = nge + w + [P]^n \{v(0) - w\}$ $\{N_{ii}(t); t \ge 0\}$ . Then • Ergodic: $\lim_{n\to\infty} \{v(n) - nge\} = w + \beta e;, \qquad \beta = \pi(v(0) - w)$ • $\lim_{t\to\infty} \frac{N_{jj}(t)}{t} = \frac{1}{E[T_{ij}]}, \qquad w.p.1$

•  $\lim_{t \to \infty} \frac{E[N_{jj}(t)]}{t} = \frac{1}{E[T_{ij}]}$ 

• If state *j* is aperiodic, then

• If state *j* is periodic with span *d*, then

 $\lim_{n \to \infty} P(X_{nd} = j \mid X_0 = j) = \frac{d}{\overline{T}_{i,i}}$ 

 $\lim_{n \to \infty} P(X_n = j \mid X_0 = j) = \frac{1}{\overline{T}_{ii}}$ 

6

Vector  $(\pi_0, \pi_1, \pi_2, ...), \pi_i \ge 0$ , such that

$$\pi_i = \sum_j \pi_j P_{ji}$$

and

 $\sum_{i} \pi_i = 1$ 

• **Theorem:** Consider an irreducible M.C. with transition probabilities  $\{P_{ij}\}$ . If the above equation has a solution, the the solution is **unique**, we have  $\pi_i = \frac{1}{T_{ii}}$  for all  $i \ge 0$ , and all states are **positive recurrent**. Also, if all states are positive recurrent, then the above equation has a solution.

- Semi-Markov Processes
- Lemma: Consider a semi-Markov process with an irreducible recurrent embedded M.C.  $\{X_n : n \ge 0\}$ . Given  $X_0 = i$ , let  $M_{ij}(t)$  be the number of transitions into a given state j in the interval (0, t]. Then  $M_{ij}(t)$  is a delayed renewal process (and  $M_{jj}(t)$  is a renewal process).
- **Theorem**: Assume that the embedded M.C. of a semi-Markov process is irreducible and positive recurrent. If  $\sum_i \pi_i \overline{U}(i) < \infty$ , then, with probability 1, the limiting fraction of time spent in state *i* is

$$p_i = \frac{\pi_i \bar{U}(i)}{\sum_j \pi_j \bar{U}(j)}$$

11

## Semi-Markov Processes

- X(t) state of process at time  $t \ge 0, X(t) \in \{0, 1, 2, ...\}$
- $S_1 < S_2 < S_3 < \dots$ : epochs at which transitions occur
- $X_n$ : new state entered at time n:  $X_n = X(S_n)$ ,  $X(t) = X_n$  for  $S_n \le t < S_{n+1}$
- $\{X_n : n \ge 0\}$  is a M.C. with  $\{P_{ij}\}$ . This M.C. is called the embedded M.C.
- $U_n = S_n S_{n-1}$  is a R.V
  - depends only on  $X_{n-1}, X_n$

$$P(U_n \le u \mid X_{n-1} = i, X_n = j) = G_{ij}(u)$$

- $\bar{U}(i, j)$ : conditional mean of transition time
- $\bar{U}(i) = \sum P_{ij}\bar{U}(i,j)$

- Special Cases
  Markov chains with countably infinite state spaces
  Branching processes

  - Birth-death Markov chains
  - Reversible Markov chains
- Semi-Markov processes
  - Markov processes
    - \* Birth-Death Markov processes
    - \* Reversible Markov

9

## **Dyanmic Programming**

- Extension of finite state Markov chains with rewards
- Optimal stationary policy *B* 
  - Single Recurrent Class:  $v^B(n) = ng^B e + w^B + [P^B]^n \{v^B(0) w^B\}$
  - Ergodic:

$$\lim_{n \to \infty} \{ v^B(n) - ng^B e \} = w^B + \beta e;, \qquad \beta = \pi^B(v(0) - w^B)$$

13