- Dec. 8, 2-5pm, GB304
- Closed book
- Entire course
- Proofs: Chapter 3 and 5
- If $\bar{X}<\infty$ or $E\left[R_{n}\right]<\infty$, then

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} R(\tau) d \tau=\frac{E\left[R_{n}\right]}{\bar{X}}, \quad \text { with probability } 1 .
$$

- If non-arithmetic renewal process and $r(z)$ is directly Rieman integrable, then

$$
\lim _{t \rightarrow \infty} E[R(t)]=\frac{E\left[R_{n}\right]}{\bar{X}} .
$$

- If arithemtic renewal process with span d, then

$$
\lim _{n \rightarrow \infty} E[R(n d)]=\frac{E\left[R_{n}\right]}{\bar{X}}
$$

- Questions
- Does $\pi=\pi[P]$ have a probability vector solution?
- Does $\pi=\pi[P]$ have a unique probability vector solution?
- Is $\lim _{n \rightarrow \infty}[P]^{n}=\left[\begin{array}{ccc}\pi_{1} & \cdots & \pi_{J} \\ \vdots & & \vdots \\ \pi_{1} & \cdots & \pi_{J}\end{array}\right]$
- Yes, solution to $\pi=\pi[P]$ always exists
- Unique, if and only if there is a single recurrent class (and possibly many transient classes)
- If there are r recurrent classes, then there exist r linearly independent solutions.
- For ergodic Markov chain we have
$\lim _{n \rightarrow \infty}[P]^{n}=\left[\begin{array}{ccc}\pi_{1} & \cdots & \pi_{J} \\ \vdots & & \vdots \\ \pi_{1} & \cdots & \pi_{J}\end{array}\right]$
- If there are several multiple recurrent classes $\lim _{n \rightarrow \infty}[P]^{n}$ exists, but rows are not identical.
- If there is one or more periodic class then $[P]^{n}$ does not converge.
- $T_{i j}$: "first passage time from i to j "
- $f_{i j}(n)$: probability mass function
- $F_{i j}(n)$: probability distribution functionq
- Classification
- recurrent: state i is recurrent if $F_{i i}(\infty)=1$
* positive recurrent $E\left[T_{i i}\right]<\infty$
* null recurrent $E\left[T_{i i}\right]=\infty$
- transient: state i is transient if $F_{i i}(\infty)<1$

Renewal Theory

Assume that state j is recurrent and consider the renewal process $\left\{N_{j j}(t) ; t \geq 0\right\}$. Then

- $\lim _{t \rightarrow \infty} \frac{N_{j j}(t)}{t}=\frac{1}{E\left[T_{j j}\right]}, \quad$ w.p. 1
- $\lim _{t \rightarrow \infty} \frac{E\left[N_{j j}(t)\right]}{t}=\frac{1}{E\left[T_{j j}\right]}$
- If state j is periodic with span d, then

$$
\lim _{n \rightarrow \infty} P\left(X_{n d}=j \mid X_{0}=j\right)=\frac{d}{\bar{T}_{j j}}
$$

- If state j is aperiodic, then

$$
\lim _{n \rightarrow \infty} P\left(X_{n}=j \mid X_{0}=j\right)=\frac{1}{\bar{T}_{j j}}
$$

Vector $\left(\pi_{0}, \pi_{1}, \pi_{2}, \ldots\right), \pi_{i} \geq 0$, such that

$$
\pi_{i}=\sum_{j} \pi_{j} P_{j i}
$$

and

$$
\sum_{i} \pi_{i}=1
$$

- Theorem: Consider an irreducible M.C. with transition probabilities $\left\{P_{i j}\right\}$. If the above equation has a solution, the the solution is unique, we have $\pi_{i}=\frac{1}{T_{i i}}$ for all $i \geq 0$, and all states are positive recurrent. Also, if all states are positive recurrent, then the above equation has a solution.
- Lemma: Consider a semi-Markov process with an irreducible recurrent embedded M.C. $\left\{X_{n}: n \geq 0\right\}$. Given $X_{0}=i$, let $M_{i j}(t)$ be the number of transitions into a given state j in the interval $(0, t]$. Then $M_{i j}(t)$ is a delayed renewal process (and $M_{j j}(t)$ is a renewal process).
- Theorem: Assume that the embedded M.C. of a semi-Markov process is irreducible and positive recurrent. If $\sum_{i} \pi_{i} \bar{U}(i)<\infty$, then, with probability 1 , the limiting fraction of time spent in state i is

$$
p_{i}=\frac{\pi_{i} \bar{U}(i)}{\sum_{j} \pi_{j} \bar{U}(j)} .
$$

- Markov chains with countably infinite state spaces
- Branching processes
- Birth-death Markov chains
- Reversible Markov chains
- Semi-Markov processes
- Markov processes
* Birth-Death Markov processes
* Reversible Markov
- Extension of finite state Markov chains with rewards
- Optimal stationary policy B
- Single Recurrent Class:
$v^{B}(n)=n g^{B} e+w^{B}+\left[P^{B}\right]^{n}\left\{v^{B}(0)-w^{B}\right\}$
- Ergodic:
$\lim _{n \rightarrow \infty}\left\{v^{B}(n)-n g^{B} e\right\}=w^{B}+\beta e ;, \quad \beta=\pi^{B}\left(v(0)-w^{B}\right)$

