Performance Analysis	Performance Analysis
 Performance measure <i>R</i>(<i>t</i>) Example: <i>R</i>(<i>t</i>) number of jobs in queue at time <i>t</i> 	One Approach: time average - "I observe the system for a long, long time". Next: ensemble average - "I come back at time <i>t</i> to check on the system "
	 <i>p_n(t)</i>: Probability that <i>n</i> jobs in the system at time <i>t</i>. <i>R</i>(<i>t</i>) = ∑_{n=0}[∞] np_n(<i>t</i>): expected number of jobs at time <i>t</i> <i>R</i> = lim_{t→∞} <i>R</i>(<i>t</i>): steady-state expected number of jobs in the system
 How to characterize "system performance"? R_t = ¹/_t ∫^t₀ R(τ)dτ : time average up to time t. R = lim_{t→∞} R_t : time average 	Ergodic System: $R = \bar{R}$
How to Computer <i>R</i> ?	Renewal Process
Assumption: $E[X] < \infty$ Result: $R = \overline{R} = \frac{E[R_n]}{E[X]}$ (under some conditions) Approach • Renewal Process • Renewal Reward Processes	Assumptions: $X_1, X_2,$ positive IID r.v.; $\overline{X} < \infty$, Results: (Note that $0 < \overline{X}$) $lim_{t\to\infty} \frac{N(t)}{t} = \frac{1}{\overline{X}}$ $lim_{t\to\infty} \frac{E[N(t)]}{t} = \frac{1}{\overline{X}}$ $lim_{t\to\infty} (E[N(t+\delta)] - E[N(t)]) = \frac{\delta}{\overline{X}}, \delta > 0$

5

Instead of arbitrary t, consider epochs $S_1, S_2, ...$

 $N(S_n) = n$

 $\lim_{n\to\infty}\frac{S_n}{n}=\bar{X}$ (Strong Law of Large Numbers)

" $\lim_{n\to\infty} \frac{N(S_n)}{S_n} = \lim_{n\to\infty} \frac{n}{S_n} = \lim_{n\to\infty} \frac{1}{S_n/n} = \frac{1}{X}$ "