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the theory, between relative frequency and probability. This is all that can be expected.
Theorems establish rigorous results within a model of reality, but cannot prove things
about the real world itself, These theorems, however, provide us with the framework to
understand and interpret the behavior of the real world. They both allow us to improve
our models, and to predict future behavior to the extent that the models reflect reality.

WEAK LAW WITH INFINITE VARIANCE: We now establish the law of large
numbers without assuming a finite variance.

THEOREM 1: WEAK LAW OF LARGE NUMBERS: Let§ =X +..+X where
X, X,, ... are IID random variables with a finite mean B[X]. Then for any £>0,

nl_i_gnm P(. Enﬂ -E[X]i=z 8) =0 (30}

Proof*S: We use a truncation argument; such arguments are used frequently in dealing
with random variables that have infinite variance. Let b be a real number (which we
later take to be increasing with n), and for each variable X, define a new random
variable X, (see figure 1.9) by

=X if IX,-E[X]I < b
X =EX|+b ifX-E[X]zb
X,=EIX]-b ifX-E[X]£-b (31)

The variables ffiare 1ID and we let B[ X 1be the mean of ii. As shown in exercise 1.10,
the variance of X can be upper bounded by the second moment around any other
value, so GXZ < EB[(X - E[X])?]. This can be further upper bounded by

oS E[[XE[X})Z] = [~ B aFgoo <b [ |x- Brxtjapsco

The last inequality follows since Ix-E[X}! < b over the range of X .We next use the fact
that Fg(x) = Fy(x) for E[X]-b < x < E[X]+b to upper bound t_he final integral.

oF<b f % EIX1|dFx() = b where o= f "|xBxI| 0 (32)

The quantity o in (32) is the mean of [X-E[X]l and must exist since we assume that X
has a mean (see example 6), Now, letting § _ = X +...+X , (and using &/2 in place of &),
(25) becomes
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Fylx}

/E[X}

EX]
b N

Figure 1.9, Truncated variable X.
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As b increases, E[X T a , N
and { X ] approaches E[X]. Thus for sufficiently large b, IE[% ] - BEX]I < /2

5
- E[X]|2e|s4ba

ne?

P

(33)

Now §

I Soi\;rnsgrz;::i S: k?ave ﬂtlhe same value for sample points where X, - E[X]I < b for all i
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n of equal to the suin of the probabilities of the individual events)

PS,#S,)<n P(| X-E[X]|> b) (34)

The event {I(S,/n)-E[X]l 2 €} can on i
IS ly occur if either K(S /n)- if §
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28 glx) ‘ 2 £) < ‘f—a +3 [Sn P(| X-E[X]|> an)] (35)

Since (33) and (34) are valid for arbitrary n and sufficiently large b>0, (35) is valid for
arbitrary 8>0 and sufficiently large n. For any given £>0, we now choose 6 to make the
first term on the right of (35) as small as desired. From (20}, the final term in brackets
in (35) can be made arbitrarily small by choosing n large enough, and thus the right
hand side of (35) can be made arbitrarily small by choosing nr large encugh, thus com-
pleting the proof.

EXAMPLE 6: The Cauchy random variable Z has the probability density f,(z) = 1/
[n{1+z2)]. The mean of Z does not exist, and Z has the very peculiar property that
[Z,+Z)+...+Z J/n has the same density as Z for all n. Thus the law of large numbers
does not hold for the Cauchy distribution, which is not surprising since the mean doesn’t
exist. Recall that the mean of a random variable exists only if

0 oo
f xdFx(x) > e and J;) xdFy(x) <eo, orequivalently, (36)

f " IxIdFy(x) <o

From symmetry, we note that, for the Cauchy distribution, the integral le’:_b dFz(z) is
zero for all b, and thus the integral exists in the Cauchy principal value sense, butnot in
the ordinary sense of (36). In this text, the existence of integrals always refers to exist-
ence in the ordinary rather than Cauchy principal value sense.

1.8 STRONG LAW OF LARGE NUMBERS

We next discuss the strong law of large numbers. We will not prove this result here, but
will prove a slightly weaker form of it after discussing martingales in Chapter 7.

- THEOREM 2: STRONG LAW OF LARGE NUMBERS (Version 1): Let § =

X+ 4K where X, X,, ... are [ID random variables with a finite mean X . Then for
any £>0,

m-x)>s) -0 (37)

The notation sup above stands for supremum (see note 2). The supremum of a set {Y;
i21)of random variables is a random variable. For each sample point @ in the sample
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One sees from this example that the strong law is saying something about a sample
outcome of an infinite sequence of random variables. If one views X as a time se-
quence, then the sample output from the sequence of sample averages S /n can be
viewed as a sequence of more and more elaborate attempts to estimate the mean. There
is clearly some advantage 10 being able to say that this sequence of attempts not only
gets close to the mean with high probability but also stays close to the mean.

Despite the above rationalization, the difference between the strong and weak law
almost appears to be mathematical nit picking. On the other hand, we shall discover, as
we uge these results, that the strong law is often much easier to use than the weak law.
The useful form of the strong law, however, is the following theorem. The statement of
this theorem is deceptively simple, and it will take some care to understand what the

theorem is saying.

THEOREM 3: STRONG LAW OF LARGE NUMBERS (Version 2): Let§ =
X1+...+XIl where X, X,,... are 1ID random variables with a finite mean X . Then with

probability 1,

lim 3t = X (39

f1—jea

For each sample point @, S (0)/n is a sequence of real numbers that might or might not
have a limit. If this limit exists for all sample points, then lim,, LSy s 2 random
variable that maps each sample point @ into lim_,.S(@)/n. Usually this limit does not
exist for all sample points, but the theorem implicitly asserts that the limit does exist
for all sample points except a set of probability 0. Thus lim, ., S /u s still regarded as
a random variable. The theorem asserts not only thatlim__, S, (@)/n exists for ali sample
points except a set of zero probability, but also asserts that the limit is equal to X forall
sample points except a set of probability 0. A sequence of random variables S /n that
converges in the sense of (39) is said to converge with probability 1.

EXAMPLE 8: Suppose the X;are Bernoulli with equiprobable ones and zeros. Then

¥ = 1/2. We can easily construct sequences for which the sample average is not 1/2;
for example the sequence of all zeros, the sequence of all ones, sequences with 1/3
zeros and 2/3 ones, and so forth. The theorem says, however, that collectively those

sequences have zero probability.

Proof of theorem 3: We assume theorem 2 (which we do not prove until Chapter 7) in
order to prove theorem 3. Consider the event illustrated in figure 1.11 in which tighter
and tighter bounds are placed on successive elements of the sequence {8 /n; n1 Y. In
particular, for some increasing set of positive integers 0y, iy, ..., We consider the bound
1S /n - X< 2k for n Sn <Ny, For any sample point @, if {S (o) n>1}) satisfies all
these constraints, then lim S (@)/n = K. The probability of the complementary set
of sample points for which one of these bounds is unsatisfied is given by
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s . Sy i
P Ukal[unk5n<nk+1( T“'X!”k)] =P UkzllunkSn(,T'X()'zk)] (40)

< Zk=1 P Unank (

%ﬂ-ilﬂ"‘) 1)

S .
WﬁE-X,>2k) (42)

X+1/2

i
l

X172

Figure 1.11.  Ilustration of the union of events in {40); the k" sub-event in (40) is the set of
sample points for which § /n falls outside of the k bound for some n,

nsnen, ;e for
which 1S/n- X | > 2*jor some ngn<n, .

The first equality is most easily visualized in figure 1.11;if IS /n - X 1> 2* for one
value of k, then IS /n - X | > 2% for all k'>k. In going from (40) to (41), we have
used the union bound; this says that the probability of a union of events is less than
or equal to the sum of the probabilities of the individual events, Finally (42) follows
because the supremum of a sequence exceeds 2% if and only if one of the elements

exceeds 27,

From (38), for any €,8>0, there is an n{e,8) such that P(supnzn(e.s)lsn/n -X >e) <.
For given 8, We then choose n, in the bound above as n, = n(2’k, 3,2%), i.e., so that
P(supnank IS, /m-XI>2%< 8,2'%. Substituting this in (42), we have

Zk:; P(supn?_nk

S, o - o0 .

It follows that the set of samy
ability at least 1-8,, and as we ha
points. Since this is true for any §,
= X must have probability I, con :

Note that as &, is decreaseq, :
the set of sample points that fall w
verges very slowly to X foragi
{8, (w)/n; n21} to stay within the
1.9 SUMMARY

This chapter has provided a brief ¢
the basic ingredients of sample sp
to random variables, and then to
understanding the underlying stn

TABLE OF STANDARD RANI |

The following table summarizest
density or PMF is specified only

Name Density or PMF

(Continuous rv, f,(x))

Exponential ~ Aexp(-Ax); x20

Ax - lexp(-Ax)

Erlang o)

. exp(-x2/262)
Gaussian ~ro
Uniform -;— ; Osx=a
(Integer rv, P (n))

Bernoulli P (0)=1-p; P (1) |
N k!
Binomial mp“(l-p)

Geometric  (1-p)p® ; n=0

Poisson




