- "Basic" Probability Theory
- Laws of Large Numbers

Probability Model

- S : sample space (all possible outcomes)
- E : event, subset of S
- \mathcal{F} : set of events
- P : rule for assigning probabilities to events

Examples of sample spaces:

- $S=\left\{w_{1}, \ldots, w_{n}\right\}$: finite number of sample points
- $S=\left\{w_{1}, w_{2}, \ldots\right\}$: countably infinite number of sample points
- $S=\left[w_{l}, w_{u}\right]$: uncountably infinite number of sample points

Axioms for Probability Measure $P: \mathcal{F} \mapsto[0,1]$

1. $0 \leq P(E) \leq 1, \quad E \in \mathcal{F}$
2. $P(S)=1$
3. If E_{1}, E_{2}, \ldots are such that $E_{j} \cap E_{j}=\emptyset, i \neq j$, then

$$
P\left(\cup_{i} E_{i}\right)=\sum_{i} P\left(E_{i}\right)
$$

Examples:

Uniform Distribution on $S=[0,1]$

- $P(\{w\})=$
, $w \in S$
- $P(E)=$

$$
, E=[x, y] \subset S
$$

From Axioms:

- $P\left(A^{C}\right)=1-P(A)$
- $P(A \cup B)=P(A)+P(B)-P(A \cap B)$

Event of Probability 1

- $E \in \mathcal{F}$
- $E \neq S$
- $P(E)=1$

Example

Conditional Probability

- $A, B \in \mathcal{F}, P(B)>0$
- $P(A \mid B)=\frac{P(A B)}{P(B)}$

Independence

- $P(A B)=P(A) P(B)$
- If A and B are independent, then

$$
P(A \mid B)=P(A)
$$

Conditional Independence

- $P(A B \mid C)=P(A \mid C) P(B \mid C)$
- Example: A, B are not independent, but A, B are conditionally independent.

Random Variable:

- $X: S \mapsto R=(-\infty,+\infty)$
- $P(X \leq x)=P(\{w \in S: X(w) \leq x\})$
- function of real variable x
- non-decreasing in x
- distribution function $F_{X}(x)$

Probability Density

- $f_{X}(x)=\frac{d}{d x} F_{X}(x)$
- If density exists and is finite everywhere, then X is a continuous RV

Probability Mass Function for Discrete RV

- $P_{X}\left(x_{i}\right), \quad i=1,2, \ldots$

Multiple Random Variables:

- X_{1}, \ldots, X_{n} are n RV.

Example: n dice rolls

Distribution Functions

- $F_{X_{1}, X_{2}, \ldots, X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$: joint distribution function
- $F_{X_{i}}\left(x_{i}\right)=F_{X_{1}, X_{2}, \ldots, X_{n}}\left(\infty, \infty, \ldots, x_{i}, \ldots, \infty\right)$: marginal distribution

The RV's X_{1}, \ldots, X_{n} are independent if for all $x_{1}, \ldots, x_{n} \in \Re^{N}$ we have

$$
F_{X_{1}, X_{2}, \ldots, X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\Pi_{i=1}^{N} F_{X_{i}}\left(x_{i}\right)
$$

Expectations:

- Cont. RV: $E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$
- Discrete RV: $E[X]=\sum_{x} x P_{X}(x)$
- General Case: $E[X]=\bar{X}=\int_{-\infty}^{\infty} x d F_{X}(x)$

Note: A RV is finite with probability 1, but this does not imply that the expectation is finite.

Non-negative RV

- $X: S \mapsto[0, \infty)$
- $E[X]=\int_{0}^{\infty}\left[1-F_{X}(x)\right] d x$
- 1 - $F_{X}(x)$: complimentary distribution function

Functions of RV

- $Y=g(X)$
- $g:(-\infty, \infty) \mapsto(-\infty, \infty)$
- $Y(w)=g(X(w)), \quad w \in S$
- $E[Y]=\int_{-\infty}^{\infty} y d F_{Y}(y)=\int_{-\infty}^{\infty} g(x) d F_{X}(x)$

Moments

- $E\left[X^{n}\right]: \mathrm{n} t h$ moment of X
- $E\left[(X-\bar{X})^{n}\right]: \mathrm{n} t h$ central moment X
- $\operatorname{VAR}(X)=\sigma_{X}^{2}=E\left[(X-\bar{X})^{2}\right]=E\left[X^{2}\right]-\bar{X}^{2}$

Sums of RV

- $Z=X+Y$
- If X, Y are RV's then Z is a RV
- If X, Y are independent $\mathrm{RV}^{\prime} \mathrm{s}$, then

$$
F_{Z}(z)=\int_{-\infty}^{\infty} F_{X}(z-y) d F_{Y}(y)
$$

- We always have

$$
E\left[X_{1}+X_{2}+\ldots+X_{n}\right]=E\left[X_{1}\right]+\ldots+E\left[X_{n}\right]
$$

- If X_{1}, \ldots, X_{n} are independent $\mathrm{RV}^{\prime} \mathrm{s}$, then

$$
\begin{gathered}
E\left[X_{1} X_{2} \ldots X_{n}\right]=E\left[X_{1}\right] E\left[X_{2}\right] \ldots E\left[X_{n}\right] \\
\sigma_{S_{n}}^{2}=\sigma_{X_{1}}^{2}+\ldots+\sigma_{X_{n}}^{2}, \quad S_{n}=X_{1}+\ldots+X_{n}
\end{gathered}
$$

$X_{1}, X_{2}, \ldots, X_{n}$: IID RV with finite mean \bar{X}
$S_{n}=X_{1}+X_{2}+\ldots+X_{n}$

Weak Law of Large Numbers

$$
\lim _{n \rightarrow \infty} P\left[\left|\frac{S_{n}}{n}-\bar{X}\right| \geq \epsilon\right]=0, \quad \epsilon>0
$$

Strong Law of Large Numbers

$$
\lim _{n \rightarrow \infty} P\left[\sup _{m \geq n}\left|\frac{S_{m}}{m}-\bar{X}\right| \geq \epsilon\right]=0, \quad \epsilon>0
$$

These results are very important for later

Central Limit Theorem

$X_{1}, X_{2}, \ldots, X_{n}$: IID RV with finite mean \bar{X} and finite variance σ_{z}^{2}
$S_{n}=X_{1}+X_{2}+\ldots+X_{n}$

Central Limit Theorem

$$
\lim _{n \rightarrow \infty} P\left(\frac{S_{n}-n \bar{X}}{\sqrt{(} n) \sigma_{x}} \leq y\right)=\int_{-\infty}^{y} \frac{1}{\sqrt{(2 \pi)}} \exp \left(\frac{-x^{2}}{2}\right) d x
$$

$Y_{n}=\frac{S_{n}-n \bar{X}}{\sqrt{(n) \sigma_{x}}}$

- $E\left[Y_{n}\right]=0$
- $\sigma_{Y_{n}}^{2}=1$
- $\lim _{n \rightarrow \infty} F_{Y_{n}}(y)=\int_{-\infty}^{y} \frac{1}{\sqrt{(2 \pi)}} \exp \left(\frac{-x^{2}}{2}\right) d x$.

For Non-negative RV:

- $P(Y \geq y) \leq \frac{E[Y]}{y}, \quad$ Markov Inequality
- If $E[Y]<\infty$, then

$$
\lim _{y \rightarrow \infty} y P(Y \geq y)=0
$$

For RV with finite mean and finite variance

- $P[|Z-E[Z]| \geq \epsilon] \leq \frac{\sigma_{Z}^{2}}{\epsilon^{2}}, \quad$ Chebyshev Inequality

Weak Law of Large Numbers for IID RV with finite mean and finite variance

Consider (S, \mathcal{F}, P) and an event $A \in \mathcal{F}$

- Indicator Function I_{A} (RV)

$$
I_{A}= \begin{cases}1 & w \in A \\ 0 & \text { otherwise }\end{cases}
$$

- $E\left[I_{A}\right]=$
- $\sigma_{A}^{2}=P(A)[1-P(A)]$
- $I_{A_{i}}, \quad i=1, \ldots, n, n$ IID RV
- Relative Frequency of A

$$
\frac{\sum_{i=1}^{n} I_{A_{i}}}{n}
$$

From weak law of large numbers

$$
\lim _{n \rightarrow \infty} P\left(\left|\frac{S_{n}}{n}-\bar{X}\right| \geq \epsilon\right)=0, \quad \epsilon>0
$$

Consistent within probability model: relative frequency of an event can be related to the probability of an event
$X_{1}, X_{2}, \ldots, X_{n}$: IID RV with finite mean \bar{X} and possible infinite variance
$S_{n}=X_{1}+X_{2}+\ldots+X_{n}$

Weak Law of Large Numbers

$$
\lim _{n \rightarrow \infty} P\left[\left|\frac{S_{n}}{n}-\bar{X}\right| \geq \epsilon\right]=0, \quad \epsilon>0
$$

Strong Law of Large Numbers

$$
\lim _{n \rightarrow \infty} P\left[\sup _{m \geq n}\left|\frac{S_{m}}{m}-\bar{X}\right| \geq \epsilon\right]=0, \quad \epsilon>0
$$

