

- $S=\{1, \ldots, J\}$
- Reward r_{i} in state $i \in S$
- $\left\{X_{n} ; n \geq 0\right\}$
- $\left\{R_{n} ; n \geq 0\right\}$
- $v_{i}(n)=E\left[\sum_{k=0}^{n} R_{k} \mid X_{o}=i\right]$
- $g=\lim _{n \rightarrow \infty} \frac{1}{n} E\left[\sum_{k=0}^{n-1} R_{k} \mid X_{o}=i\right]$
- Single Recurrent Class: $g=\sum_{i=1}^{J} \pi_{i} r_{i}$
- Focus on $v_{i}(n)$
- Example

$-\lim _{n \rightarrow \infty} \frac{1}{n} E\left[\sum_{k=1}^{n} R_{k} \mid X_{o}=i\right]=g=\sum_{i=1}^{J} \pi_{i} r_{i}$
- Time-average is the same no matter where we start.
- What about transient behavior: $v_{1}(n)-v_{2}(n)$? states
- Let π be the steady state probability vector and let
- Let the vector w be a solution to $w+g e=r+[P] w$
- Then

Markov Decision Theory

- Assumption: Single recurrent class and perhaps some transient

$$
g=\sum_{i} r_{i} \pi_{i}
$$

$$
v(n)=n g e+w+[P]^{n}\{v(0)-w\}
$$

- At each state i we can choose between K_{i} actions where each actions is characterized by a reward $r_{i}^{(k)}$ and transition probability $P_{i j}^{(k)}, j=1, \ldots, J$.
- Policy: "Decide for each state $i \in S$ which action k, $k=1, \ldots, K_{i}$ to apply at state $i^{\prime \prime}$
- Stationary policy: decision does not depend on time n
- Dynamic Policy
- For a given stationary policy A, we have $g^{A}=\sum_{i} \pi_{i}^{A} r_{i}^{A}$
- Questions
- Optimal Dynamic Policy
- Optimal Stationary Policy
- Optimal decision at time 1:

$$
v_{i}^{*}(1)=\max _{k=1, \ldots, K_{i}}\left\{r_{i}^{(k)}+\sum_{j} P_{i j}^{(k)} v_{j}(0)\right\}
$$

- Optimal decision at time 2 :

$$
v_{i}^{*}(2)=\max _{k=1, \ldots, K_{i}}\left\{r_{i}^{(k)}+\sum_{j} P_{i j}^{(k)} v_{j}^{*}(1)\right\}
$$

- Optimal decision at time n :

$$
v_{i}^{*}(n)=\max _{k=1, \ldots, K_{i}}\left\{r_{i}^{(k)}+\sum_{j} P_{i j}^{(k)} v_{j}^{*}(n-1)\right\}
$$

or

$$
v_{i}^{*}(n)=\max _{A}\left\{r^{A}+\left[P^{A}\right] v^{*}(n-1)\right\}
$$

- Note: finite number of policies
- Dynamic programming algorithm
- Conceptually easy
- What about asymptotic behavior as n becomes large?
- Assumption: For all policies A the Markov chain with $\left[P^{A}\right]$ is recurrent. Strong Assumption!
- For fixed policy A

$$
v^{A}(n)=n g^{A} e+w^{A}+\left[P^{A}\right]^{n}\left\{v(0)-w^{A}\right\}
$$

where

$$
w^{A}+g^{A} e=r^{A}+\left[P^{A}\right] w^{A}
$$

- Goal: Find policy B such that $g^{B} \geq g^{A}$ for all policies A.

Optimal Stationary Policy: Guess

- Intuition: For $n \rightarrow \infty$, optimal dynamic policy becomes optimal stationary policy
- Suppose for $n \geq m$, the optimal policy is always B, then for large n we have (see Theorem 7 in Chapter 4)

$$
v^{*}(n) \approx v^{B}(n) \approx n g^{B} e+w^{B}+\beta e
$$

- Because B is optimal policy for $n \geq m$, for any policy A we have

$$
r^{B}+\left[P^{B}\right] v^{*}(n) \geq r^{A}+\left[P^{A}\right] v^{*}(n)
$$

- Using $v^{*}(n) \approx n g^{B} e+w^{B}+\beta e$, we have

$$
r^{B}+\left[P^{B}\right] w^{B} \geq r^{A}+\left[P^{A}\right] w^{B}
$$

- Is such a policy B an optimal stationary policy?
- Lemma: If $v(0)=w^{B}$ and

$$
r^{B}+\left[P^{B}\right] w^{B} \geq r^{A}+\left[P^{A}\right] w^{B}
$$

for all policies A, then policy B is an optimal dynamic policy and

$$
v^{*}(n)=w^{B}+n g^{B} e
$$

- Theorem The policy B is an optimal stationary policy if and only if

$$
r^{B}+\left[P^{B}\right] w^{B} \geq r^{A}+\left[P^{A}\right] w^{B}
$$

for all policies A.

1. Choose an arbitrary initial policy B
2. Calculate w^{B}
3. If $r^{B}+\left[P^{B}\right] w^{B} \geq r^{A}+\left[P^{A}\right] w^{B}$ for all policies A, then stop - B is an optimal stationary policy
4. Otherwise, choose a policy A such that

$$
r^{A}+\left[P^{B}\right] w^{B} \geq, \neq r^{B}+\left[P^{A}\right] w^{B}
$$

5. Update policy B to the new policy A and go to step (2)

Optimal Dynamic Policy vs. Optimal Stationary Policy

- Theorem Assume that B is an optimal stationary policy and that the Markov chain with $\left[P^{B}\right]$ is ergodic. Then

$$
\lim _{n \rightarrow \infty} v^{*}(n)-n g^{B}=w^{B}+\left(\beta^{\prime}-\pi^{B} w^{B}\right) e
$$

where β^{\prime} is the constant from the above lemma.

