$$
\overbrace{\mathrm{q}=1-\mathrm{q}}^{\mathrm{p}} \underbrace{\mathrm{p}}_{\mathrm{q}} \ldots
$$

- State 0: recurrent or transient?
- $p<q$
- $p=q$
- $p>q$

Renewal theory: Inter-arrival time must be a r.v.
If $F_{i j}(\infty)=1$, then the mean time $\bar{T}_{i j}$ is of interest,

$$
\bar{T}_{i j}=1+\sum_{n=1}^{\infty}\left(1-F_{i j}(n)\right) .
$$

$\bar{T}_{i j}$ can be finite or infinite.

- null recurrent: state i is null recurrent if $F_{i i}(\infty)=1$ and $\bar{T}_{i i}=\infty$.
- positive recurrent: state i is positive recurrent if $F_{i i}(\infty)=1$ and $\bar{T}_{i i}<\infty$.
- transient: state i is transient if $F_{i i}(\infty)<1$

Classification

- recurrent: state i is recurrent if $F_{i i}(\infty)=1$
- transient: state i is transient if $F_{i i}(\infty)<1$
- Note that above definition are consistent with the ones for finite state M.C. (what about the other way around?)

$$
\mathrm{p}=1-\mathrm{q}
$$

Renewal Theory

Assume that state j is recurrent and consider the renewal process $\left\{N_{j j}(t) ; t \geq 0\right\}$. Then

- $\lim _{t \rightarrow \infty} \frac{N_{j j}(t)}{t}=\frac{1}{E\left[T_{j j}\right]}, \quad$ w.p. 1
- $\lim _{t \rightarrow \infty} \frac{E\left[N_{j j}(t)\right]}{t}=\frac{1}{E\left[T_{j j}\right]}$
- If state j is periodic with span d, then

$$
\lim _{n \rightarrow \infty} P\left(X_{n d}=j \mid X_{0}=j\right)=\frac{d}{\bar{T}_{j j}}
$$

- If state j is aperiodic, then

$$
\lim _{n \rightarrow \infty} P\left(X_{n}=j \mid X_{0}=j\right)=\frac{1}{\bar{T}_{j j}}
$$

Steady-State probabilities

Theorem: Let j be a recurrent state in a M.C. and let i be any state
in the same class. Furthermore, let $X_{0}=i$ and consider the counting process $\left\{N_{i j}(t) ; t \geq 0\right\}$. Then

- $\lim _{t \rightarrow \infty} \frac{N_{i j}(t)}{t}=\frac{1}{E\left[T_{j j}\right]}, \quad$ w.p. 1
- $\lim _{t \rightarrow \infty} \frac{E\left[N_{i j}(t)\right]}{t}=\frac{1}{E\left[T_{j j}\right]}$
- If state j is aperiodic, then

$$
\lim _{n \rightarrow \infty} P\left(X_{n}=j \mid X_{0}=i\right)=\frac{1}{\bar{T}_{j j}}
$$

$\operatorname{Vector}\left(\pi_{0}, \pi_{1}, \pi_{2}, \ldots\right), \pi_{i} \geq 0$, such that

$$
\pi_{i}=\sum_{j} \pi_{j} P_{j i}
$$

and

$$
\sum_{i} \pi_{i}=1
$$

- Theorem: Consider an irreducible M.C. with transition probabilities $\left\{P_{i j}\right\}$. If the above equation has a solution, the the solution is unique, we have $\pi_{i}=\frac{1}{T_{i i}}$ for all $i \geq 0$, and all states are positive recurrent. Also, if all states are positive recurrent, then the above equation has a solution.

Theorem: All states in the same class of a M.C. are of the same type - positive recurrent, null recurrent, transient.

