

p = 1 - q

- State 0: recurrent or transient?
- p < q
- p = q
- p > q

Renewal theory: Interarrival time must be a r.v.

First Passage-Time

- $f_{ij}(n)$: "first passage time probability"
 - $f_{ij}(n) = P(X_n = j, X_{n-1} \neq j, ..., X_1 \neq j | X_0 = i)$ - $P_{ij}(X_n = j | X_0 = i)$ $f_{ij}(n)$
- $f_{ij}(n) = \sum_{k \neq j} P_{ik} f_{kj}(n-1),$ n > 1 and $f_{ij}(1) = P_{ij}$ We can compute $f_{ij}(n)$ recursively
- $F_{ij}(n) = \sum_{m=1}^{n} f_{ij}(m)$
- T_{ij} : first passage time
 - $f_{ij}(n)$: probability mass function
 - $F_{ij}(n)$: probability distribution functionq
- *F*_{ij}(∞): If *F*_{ij}(∞) = 1 then *T*_{ij} is a R.V. otherwise *T*_{ij} is a defective R.V.

- recurrent: state *i* is recurrent if $F_{ii}(\infty) = 1$
- **transient**: state *i* is transient if $F_{ii}(\infty) < 1$
- Note that above definition are consistent with the ones for finite state M.C. (what about the other way around?)

3

 $F_{ij}(\infty)$

- $F_{ij}(n) = P_{ij} + \sum_{k \neq j} P_{ik}F_{kj}(n-1);$ $n > 1, \quad F_{ij}(1) = P_{ij}$
- $F_{ij}(n)$: non-decreasing in n and upper-bounded by 1 therefore $\lim_{n\to\infty} F_{ij}(n)$ exists.
- $F_{ij}(\infty) = P_{ij} + \sum_{k \neq j} P_{ik} F_{kj}(\infty)$
 - does a solution exist?
 - is there a unique solution?
- Lemma: Let state *i* be accessible from *j* and let *j* be recurrent. Then $F_{ij}(\infty) = 1$

1

- Given X₀ = i, let {N_{ij}(t); t ≥ 0} be the counting process where N_{ij}(t) is the number of transitions into state j by time t (including self-transitions).
- Similarly, $\{N_{jj}(t); t \ge 0\}$
- If *j* is **recurrent**, then $\{N_{jj}(t); t \ge 0\}$ is a renewal process.
- We know (whether or not $E[T_{jj}]$ is finite)
 - $\lim_{t\to\infty} N_{jj}(t) = \infty$, w.p. 1
 - $\lim_{t\to\infty} E[N_{jj}(t)] = \infty$
- If *j* is **transient**, then $\{N_{jj}(t); t \ge 0\}$ is **not** a renewal process.
 - Expected number of returns: $\frac{F_{jj}(\infty)}{1-F_{ij}(\infty)} < \infty$

Lemma: Let {N_{jj}(t); t ≥ 0} be the counting process for occurrences of state j up to time t in a Markov chain starting at state j. The state j is recurrent if and only if

$$\lim_{t \to \infty} N_{jj}(t) = \infty, \qquad \text{w.p.1}$$

Also, j is recurrent if and only if

$$\lim_{n \to \infty} \sum_{k=1}^n P_{jj}^k = \infty.$$

• Lemma: If state *i* is recurrent and state *i* and *j* are in the same class, the state *j* is recurrent.

Renewal Theory

•
$$P_{jj}^n = E \Big[N_{jj}(n) - N_{jj}(n-1) \Big]$$

• $E\left[N_{jj}(n)\right] = \sum_{k=1}^{n} P_{jj}^{k}$

Lemma: Let {N_{ij}(t); t ≥ 0} be the counting process for occurrences of state j up to time t in a Markov chain starting at state i. Then if i and j are in the same class and i and j are recurrent, then {N_{ij}(t); t ≥ 0} is a delayed renewal process.

5

7