- $S = \{1, ..., J\}$
- Matrix Representation

$$[P] = \begin{bmatrix} P_{11} & \cdots & P_{1J} \\ \vdots & & \vdots \\ P_{J1} & \cdots & P_{JJ} \end{bmatrix}$$

- Classification:
 - recurrent / transient
 - periodic / aperiodic
- ergodic class
- ergodic chain: single ergodic class

Finite State Markov Chain

• Theorem: For ergodic Markov chain we have

$$P_{ij}^m > 0, \qquad m \ge J(J-1).$$

- Questions
 - Does $[P]^n$ converge?

- Is
$$\lim_{n\to\infty} P_{ij}^n = \lim_{n\to\infty} P_{kj}^n$$
?

- If above is true, then
$$\lim_{n\to\infty} [P]^n = \begin{bmatrix} \pi_1 & \cdots & \pi_J \\ \vdots & & \vdots \\ \pi_1 & \cdots & \pi_J \end{bmatrix}$$

and
$$\pi = \pi[P]$$

• Questions

– Does
$$\pi = \pi[P]$$
 have a probability vector solution?

– Does
$$\pi = \pi[P]$$
 have a unique probability vector solution?

- Is
$$\lim_{n\to\infty} [P]^n = \begin{bmatrix} \pi_1 & \cdots & \pi_J \\ \vdots & & \vdots \\ \pi_1 & \cdots & \pi_J \end{bmatrix}$$

3

Answers

- Yes, solution to $\pi = \pi[P]$ always exists
- Unique, if and only if there is a single recurrent class (and possibly many transient classes)
- If there are *r* recurrent classes, then there exist *r* linearly independent solutions.
- For ergodic Markov chain we have

$$\lim_{n \to \infty} [P]^n = \begin{bmatrix} \pi_1 & \cdots & \pi_J \\ \vdots & & \vdots \\ \pi_1 & \cdots & \pi_J \end{bmatrix}$$

- If there are several multiple ergodic classes lim_{n→∞}[P]ⁿ exists, but rows are not identical.
- If there is one or more periodic class then $[P]^n$ does not converge.

1

Answers

- Existence: yes
- Uniqueness: single recurrent class
- Convergence: aperiodic
- Uniqueness and Convergence: ergodic

Matrix Theory

- $[A]: J \times J$ matrix
- π is **left eigenvector** with **eigenvalue** λ if $\pi \neq 0$ and

 $\pi[A] = \lambda \pi$

• ν is **right eigenvector** with **eigenvalue** λ if $\pi \neq 0$ and

 $[A]\nu = \lambda\nu$

• Eigenvectors with eigenvalue λ exist if $[A - \lambda I]$ is singular, *i.e.*

$$\det([A - \lambda I]) = 0$$

• $[P] = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix}$ • Eigenvalues: $\lambda_1 = 1$ and $\lambda_2 = 1 - P_{12} - P_{21}$ • Eigenvectors: $\pi^{(1)}, \pi^{(2)}$ and $\nu^{(1)}, \nu^{(2)}$ $\begin{bmatrix} \lambda_1 & 0 \end{bmatrix} \begin{bmatrix} \nu_1^{(1)} & \nu_1^{(2)} \end{bmatrix}$
• $[\Lambda] = \begin{vmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{vmatrix}; [U] = \begin{vmatrix} \nu_1^{(1)} & \nu_1^{(2)} \\ \nu_2^{(1)} & \nu_2^{(2)} \end{vmatrix};$
• $[P][U] = [U][\Lambda]; [U]^{-1}[P] = [\Lambda][U]^{-1}; [U]^{-1} = \begin{bmatrix} \pi_1^{(1)} & \pi_2^{(1)} \\ \pi_1^{(2)} & \pi_2^{(2)} \end{bmatrix};$
Example
• $[P] = [U][\Lambda][U]^{-1};$ $[P]^n = [U][\Lambda]^n [U]^{-1}$ • $[P]^n = \begin{bmatrix} \pi_1 + \pi_2 \lambda_2^n & \pi_2 - \pi_2 \lambda_2^n \\ \pi_1 - \pi_1 \lambda_2^n & \pi_2 + \pi_1 \lambda_2^n \end{bmatrix};$ $\begin{bmatrix} \pi_1 = \frac{P_{21}}{P_{12} + P_{21}} = \pi_1^{(1)} \\ \pi_2 = 1 - \pi_1 = \pi_2^{(1)} \end{bmatrix};$ • $\lambda_2 = 1 - P_{12} - P_{21}$ and $ \lambda_2 \le 1 = \lambda_1$

- If $P_{12} = P_{21} = 0$ then $\lambda_2 = 1$ and [P] = [I] (two recurrent classes)
- If $P_{12} = P_{21} = 1$ then $\lambda_2 = -1$ and $[P]^n = [P]$ for n odd, and $[P]^n = [I]$ for n even (periodic)
- In all other cases we have $|\lambda_2| < 1$ and $\lim_{n \to \infty} [P]^n = \begin{bmatrix} \pi_1 & \pi_2 \\ \pi_1 & \pi_2 \end{bmatrix}$; (ergodic = aperiodic, recurrent)

6

5

7

Questions	Theorem (Frobenius)
 Does there exists a left eigenvector π with eigenvalue λ = 1, <i>i.e.</i> π = π[P] Does lim_{n→∞}[P]ⁿ converge? 	 [A], J × J matrix which is irreducible, then [A] has a positive eigenvalue λ that is greater than or equal to the magnitude of every other eigenvalue, <i>i.e.</i> λ ≥ λ' There is a positive right eigenvector ν > 0 corresponding to λ such that for any non-zero vector x ≥ 0, if λx ≤ [A]x, then λx = [A]x if λx = [A]x then x = αν ("ν is unique within a scale factor")
9	11
Perron-Frobenius Theory	Corollaries
 x = (x₁,x_J) is positive (x > 0) if x_j > 0, j = 1,,J [A] = [A_{ij}] is positive ([A] > 0) if A_{ij} > 0, i, j = 1,,J x = (x₁,x_J) is non-negative: x ≥ 0 [A] is non-negative: [A] ≥ 0 	 Corollary 1: The largest real eigenvalue of an irreducible matrix [A] ≥ 0 has a positive left eigenvector π. π is unique (within a scale factor) and it is the only non-negative, non-zero vector (within a scale factor) that satisfies λπ ≤ π[A]
 x > y if (x − y) > 0 A J × J matrix [A] is irreducible if [A] ≥ 0 and ∑_{n=1}^{J-1}[A]ⁿ > 0 (single recurrent class) 	 Corollary 2: Let λ be the largest real eigenvalue of an irreducible matrix [A] and let π > 0, ν > 0, be the eigenvectors. Then (within a scale factor) ν and π are the only non-negative eigenvectors.

Corollaries		Review Answers	
• Corollary 3: Let <i>P</i> be a stochastic irreducible matrix [<i>A</i>], then			
– $\lambda = 1$ is the largest real eigenvalue of $[P]$			
– $e = (1,, 1)^T$ is the right eigenvector of $\lambda = 1$		• Existence: yes - Extension Corollary 3/4	
– there is a unique probability vector $\pi > 0$ that is a left		Uniqueness: single recurrent class - Corollary 3/4	
eigenvector for $\lambda = 1$		Convergence: aperiodic - Extension Theorem 6	
Extension: stochastic matrix $[P]$ always has a probability		• Uniqueness and Convergence: ergodic - Theorem 6	
vector $\pi > 0$ that is a left eigenvector for $\lambda = 1$		• Oniqueness and Convergence. ergodic - medient o	
• Corollary 4: Let <i>P</i> be the transition matrix of a Markov chain with a single recurrent class and one or more transient classes, then			
– $\lambda = 1$ is the largest real eigenvalue of $[P]$			
- $e = (1,, 1)^T$ is the right eigenvector of $\lambda = 1$			
– there is a unique probability vector $\pi \ge 0$ that is a left			
eigenvector for $\lambda = 1$			
	13		15
Corollaries			
• Corollary 6: Let λ be the largest eigenvalue of a positive			
matrix $[A] > 0$ and let π (ν) be the positive left (right)			
eigenvector of λ normalized such that $\pi \nu = 1$, then			
$\lim_{n \to \infty} \frac{ A ^n}{\lambda^n} = \nu \pi$			
• Theorem 6: Let [<i>P</i>] be the transition matrix of an <i>ergodic</i>			
Markov chain. Then $\lambda = 1$ is the largest real eigenvalue of of $[P]$, and $\lambda \ge \lambda' $ for every other eigenvalue λ' . Furthermore,			
$\begin{bmatrix} \pi_1 & \cdots & \pi_L \end{bmatrix}$			
we have $\lim_{n \to \infty} \frac{[P]^n}{e^{\pi}} - e^{\pi} - \frac{1}{e^{\pi}}$			
we have $\lim_{n\to\infty} \frac{[P]^n}{\lambda^n} = e\pi = \begin{bmatrix} \pi_1 & \cdots & \pi_J \\ \vdots & \vdots \\ \pi_1 & \cdots & \pi_J \end{bmatrix}$			
• Theorem 6 can be extended to Markov chains with a single			
ergodic class and transients.			