3

4

• Example: Systems is either "idle" or "busy"	• Integer time process: $X_0, X_1, X_2, X_3,, X_n \in S$, such that $P(X_n = j \mid X_{n-1} = i, X_{n-2} = k,, X_0 = m)$ $= P(X_n = i \mid X_{n-1} = i)$
• Reward r_i in state $i \in \{0, 1\}$ • System Dynamic: $X_0, X_1, X_2, X_3,, X_n \in \{0, 1\}$ X_0 : fixed, or choose with some probability • Rewards: $R_0, R_1, R_2, R_3,, R_n \in \{r_0, r_1\}$	 P(X_n = j + X_{n-1} = i) = P_{ij} P_{ij}: "transition probability for going from state <i>i</i> to <i>j</i>" (does not depend on time <i>n</i>) Nice: "independence", "decoupling", from the past - > reduction of complexity Initial distribution: P(X₀ = i), i ∈ S State space S: finite (matrix representation) countable infinite (renewal process)
• Questions:	Finite State Markov Chain
$\begin{split} P(X_n = j), j \in \{0, 1\}, n = 0, 1, 2, \dots \\ lim_{n \to \infty} P(X_n = j) \\ \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} R_n \\ \lim_{n \to \infty} E[R_n] \end{split}$	 S = {1,,J} State Transition diagram
	• Matrix Representation $[P] = \begin{bmatrix} P_{00} & P_{01} \\ P_{10} & P_{11} \end{bmatrix}$

Classification of States	Classification of States
• " <i>j</i> is accessible from <i>i</i> ": there exists a directed path from <i>i</i> to j	 <i>"j</i> is recurrent": if <i>j</i> is accessible from all states that are accessible from <i>j</i> if <i>j</i> → <i>i</i> then <i>i</i> → <i>j</i>
$\iota \to J$	• "if <i>j</i> is not recurrent, then state <i>j</i> is transient"
$P(X_n = i \mid X_0 = i) > 0$, for some $n \ge 1$	– "eventually we will not observe j anymore"
$P(X_n = i \mid X_0 = i) = P_{ij}^n, n \ge 1$ $P_{ij}^0 = 1; P_{ij}^0 = 0, i \ne j$	 if <i>j</i> is transient, then all states in the same class as <i>j</i> are transient
JJ , LJ , , J	– a class T is either recurrent, or transient
	 one "rotten state" makes the whole class "rotten"
Classification of States	Aperiodic/Periodic States
• " <i>i</i> and <i>j</i> communicate":	• if $X_0 \in \{2, 4\}$, then
$i \leftrightarrow j \text{ if } i \rightarrow j \text{ and } j \rightarrow i$	$-\Lambda_1 \in \{1, 3\}$
if $i \leftrightarrow m$ and $m \leftrightarrow j$, then $i \leftrightarrow j$	$-\Lambda_2 \in \{2,4\}$ $V \in \{1,2\}$
i ightarrow i	$-X_3 \in \{1, 3\}$ $V \in \{2, 4\}$
• Class of states: a non-empty set of states <i>T</i> such that	$-\Lambda_4 \in \{2,4\}$
– all states in T communicate with each other	• Period $d(i)$ of state <i>i</i> is the greatest common divisor (gcd) of the values <i>n</i> for which $P^n > 0$
– no state in <i>T</i> communicates with a state that is not in <i>T</i>	$\frac{1}{ii} > 0$

Aperiodic/Periodic States

- if d(i) = 1, then state *i* is **aperiodic**
- if d(i) > 1, then state *i* is **periodic**
- periodic vs. arithmetic
- **Theorem**: For any MC, all states of the same class have the same period.
- **Theorem**: If a recurrent class of states in a MC has period d > 1, then the class can be partitioned into d subclasses, $T_1, T_2, ..., T_d$, such that for each m, if $j \in T_m$ and $P_{ik} > 0$ then $k \in T_{m+1}$.

9

Ergodic Class

- Ergodic Class: both recurrent and aperiodic
- Ergodic Chain: consisting entirely of a single ergodic class
- **Theorem**: If a finite state MC is ergodic and has *J* states, then $P_{ii}^m > 0$ for all i, j and all $m \ge J(J-1)$.