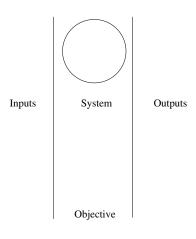
CSC2206 - System Modeling and Analysis

Peter Marbach

www.cs.toronto.edu/~marbach/csc2206_F20.html

System Modeling and Analysis


- Motivation
- Overview
- Course Organization

Goal

 Make you stronger researchers by providing tools to model systems with uncertainty.

Application Areas

- Machine Learning
- Social Networks
- Online Markets
- Financial Mathematics
- Systems
 - Database Systems
 - Computer Systems
 - Computer Networks

Design

- Heuristics
- Simulations
- Mathematical Modeling and Analysis

Example: Single Buffer

Questions

- Performance of a Given System?
- Performance Change as Systems Changes
- Choose between different Designs
- Optimal Design

Approach

Mathematical Representation/Model

Analysis

Why Difficult?

•

0

•

Goal

- Know Probabilistic Models
- Know when and how to apply them
- Become Stronger Researchers

Outline

- Review Probability Theory
- Poisson Processes
- Renewal Processes
- Markov Chains
- Markov Processes
- Markov Reward Processes
- Dynamic Programming
- > Quality not Quantity
- > Fundamentals not Applications

Example

Organization

- Lectures
 - Concepts
- Assignments
 - Study and Practice

How to be Successful

- Be Motivated
- Study in Groups
- Keep up with Reading/Material
- Spend Time on Assignments

Course Material

- Text Book:
 - "Discrete Stochastic Processes," R. Gallager.
 - "STOCHASTIC PROCESSES: THEORY FOR APPLICATIONS," R. Gallager
- Reference:
 - "Stochastic Processes," S. Ross
- Lecture Slides

Grading

• 5 Assignments: 15%

• Midterm: 30%

• Final: 55%

Each student has to submit (in Latex and pdf-file) the solutions for one of the assignments.

Information

Email by Friday

Name and Student ID

Course Web Page

www.cs.toronto.edu/~marbach/csc2206_F20.html

- Schedule
- Assignments
- Lecture Slides
- Reading Assignments