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4.21) a) Find lim,_,..[P]" for the Markov chain below. Hint: Think in terms of the long
term transition probabilities. Recall that the edges in the graph for a Markov chain
correspond to the positive transition probabilities.

b) Let © and 7 denote the first two rows of limy,_,..[P]" and let 'V and @
denote the first two columns of lim,_,..[P]". Show that T and 7t are independent left
eigenvectors of [P], and that u? and u® are independent right eigenvectors of [P].
Find the eigenvalue for each eigenvector.
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¢} Letr be an arbitrary reward vector and consider the equation
[Plw +r=g+w, g=omd+Bu®; o, scalars (a)

Determine what values o and [ (and thus g) must have in order for (a) to have a solu-
tion. Argue that with the additional constraints w=w,=0, (a) has a unique solution for
w and find that w.

d) Show that w' = w + o, + Pu, satisfies (a) for all choices of scalars o and .

€) Assume that the reward at stage 0 is v(0) = w. Show that v(n} = ng + w.

) For an arbitrary reward ¥(0) at stage 0, show that v{n) = ng + w + [P]* (v(0)-w).
Why isn’t theorem 7 applicable here?

4.22) Generalize exercise 4,21 to the general case of two ergodic Markov classes and
one transient class.

4.23) a} Consider a Markov decision problem with J states and assume that for each
policy A = (kj, kg, ..., k), the Markov chain [PA] is ergodic. Suppose that policy B is a
stationary optimal policy and A is any other policy. Use equations (50) to (52), with the
inequalities appropriately reversed, to show that gB 2 gA,

B) Show that if r® + [PBlw® > r* + [PAIwP is not satisfied with equality, then
gB>gh,

¢) Assume in paris (c) through (g) that A and B are both optimal stationary poli-
cies. Show that r® + [PBIw® = ¢* + [PAJw®, Hint: use part (b).

&) Find the relationship between the relative gain vector w? for policy A and the
relative gain vector w® for policy B. Hint: Show that ¥ + [PBlwA = gPe+wA; what does
this say about wA?

e) Suppose that policy A uses decision 1 in state 1 and policy B uses decision 2 in
state I (i.e., k; = 1 for policy A and k; = 2 for policy B). What is the relationship
between 1;%, Py ¥, Po¥, ... Py for k equal to 1 and 2?
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) Now suppose that policy A uses decision 1 in each state and policy B uses
decision 2 in each state. Is it possible that r;! > r;? for all i? Explain carefully.

g) Now assume that r;' is the same for all i. Does this change your answet to part
(£)? Explain.

4.24) Consider a Markov decision problem with three states, Assume that each sta-
tionary policy corresponds to an ergodic Markov chain. It is known that a particular
policy B = (ky, ky, ka) = (2,4,1) is the unique optimal stationary policy (i.e., the gain per
stage in steady state is maximized by always using decision 2 in state 1, decision 4 in
state 2, and decision 1 in state 3), As usnal, r}‘ denotes the reward in state i under
decision k, and P{‘- denotes the probability of a transition to state j given state i and
given the use of decision k in state i.

Consider the effect of changing the Markov decision problem in each of the fol-
lowing ways (the changes in each part are to be considered in the absence of the changes
in the other parts):

a) rf is replaced by r{ -1

b) r% is replaced by r% +1.
c) r!f is replaced by r;f + 1 for all state 1 decisions k.
d) forall i, ri{i is replaced by r:(i + 1 for the decision k; of policy B.

For each of the above changes, answer the following questions; give explanations:

1) Is the gain per stage, g®, increased, decreased, or unchanged by the given change?
i} Is it possible that another policy, A#B, is optimal after the given change?

4.25) (The Odoni Bound) Let B be the optimal stationary policy for a Markov decision
problem and let g® and t® be the corresponding gain and steady state probability re-
spectively. Let v;*(n) be the optimal dynamic expected reward for starting in state i at
stage n.

a) Show that min; [vi*(n)-vi*(n-1)] € g® < maxi{vi*(n)-vi*(n-1)] ; n=1. Hint: Con-
sider premultiplying v*(n) - v*(n-1) by ®® or 7t* where A is the optimal dynamic
policy at stage n.

b) Show that the lower bound is non-decreasing in n and the upper bound is non-
increasing in n and both converge to gP with increasing n.

4.26) (Extension of theorem 8 to recurrent plus transient chains). Define a policy B
that is recurrent plus transient to be a stationary optimal policy if, first, g® > gA for any
other policy (or any recurrent class of any other policy with multiple recurrent classes),
and second, if g = gA, w® 2 wA, where w;=0 for both policy A and B and state 1 is in
the recurrent class of policy B.

a) Show that if (46) is satisfied and if v(0) = w®, then the optimal dynamic policy
is B at every stage.
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behavior. The somewhat startling result here is that in steady state, and at a fixed time,
the number of customers at each node is independent of the aumber at each other node
and satisfies the same distribution as for an M/M/1 queue. Also the exogenous depar-
tures from the network are Poisson and independent from node to node. We empha-
sized that the number of customers at one node at one time is often dependent on the
number at other nodes at other times. The independence holds only when all nodes are
viewed at the same time.

For further reading on Matkov processes, see [Kel79], [Ros83], [Wol89], and
fFel66].

EXERCISES

6.1) Consider a Markov process for which the embedded Markov chain is a birth death
chain with transition probabilities P;;,; = 2/5 for all i21, P;; = 3/5 for all i21, Py = 1,
and P;; = 0 otherwise.

a) Find the steady state probabilities {r;; i20} for the embedded chain.

b) Assume that the transition rate v; out of state i, for i20, is given by v; = 21 Find
the transition rates {gy} between states and find the steady state probabilities {p;} for
the Markov process, Explain heuristically why =; # p;.

¢) Now assume in parts {c) to (f} that the transition rate out of state i, for i=20, is
given by v; = 27, Find the transition rates {q} between states and draw the directed
graph with these transition rates.

d) Show that there is no probability vector solution {py; 20} to Eq. 9 in Chapter 6.

e) Argue that the expected fime between visits to any given state i is infinite. Find
the expected number of transitions between visits to any given state i. Argue that, start-
ing from any state i, an eventual return to state i occurs with probability 1.

f) Consider the sampled time approximation of this process with 8=1. Draw the
graph of the resulting Markov chain and argue why it must be null-recurrent.

6.2) a) Consider a Markov process with the set of states {0, 1, ...} in which the transi-
tion rates {qy} between states are given by gy, = (3/5)2! for i20, q;;., = (2/5)2i for i21,
and q;; = 0 otherwise. Find the transition rate v; out of state i for each i20 and find the
transition probabilities {P;} for the embedded Markov chain.

b) Find a solution {p;} with X;p=1 to (9).

¢) Show that all states of the embedded Markov chain are transient.

4) For each state i of the embedded Markov chain, associate a reward r; = 27, i.e.,
the mean time until a transition is made from state i. Let V;(0) be a final reward in stage
0 and assume that V,(0) = W; where W, satisfies the equations

W, = 2 4 (3/5)Wipq + (2/5)W,p; i21 and Wy =1 + W, (a)

Show that for all n>0, V(n) = W;. Note that this is the expected time to make n transi-
tions, plus the final reward after n transitions. Thus if (a) has a bounded solution, the
expected time to make an infinite number of transitions is finite, and the process is
irregular.
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_ f’) Define § = W;-W,,,, and show that (a) can be rewritten as 8 = (/38 + (513)2
*for iz1. Note from (a) that 8;=1. Show that & < 2i (2/3)"! for i>1.
f) Show that W - lim;_,.,W; < o. This shows that the process is irregular, and in

parti.cular shows that the solution {p;; i20} found in (a) is not a steady state solution,
and in fact has no physical meaning.

6.3} a) Consider the process in the figure below. The process starts at X(0) = 1, and for

altizl, Pijyy = 1 and v; = i for all 1. Let T, be the time that the n® transition occurs,
Show that

BTy = 3 i% <2 foralin

Hint: Upper bound the sum from i=2 by integrating x? from x=1.
1 4
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b)‘ ’Qse the Markov inequality to show that P(T,,> 4) < 1/2 for all n. Show that the
probability of an infinite number of transitions by time 4 is at least 1/2,

6.4) Letq;;,; =2 for all i20 and let q;;., = 21! for all i21. All other transition rates are 0.

a) Solve the steady state equations and show that p; = 2 for all i20.

b) Find the transition probabilities for the embedded Markov chain and show that
the chain is nuil recurrent.

c)f For any state i, consider the renewal process for which the Markov process
starts in state i and renewals occur on each transition to state i. Show that, for each i>1 )
the expected inter-renewal interval is equal to 2. Hint: Use renewal reward theory.

d) Show that the expected number of transitions between each entry into state i is

infinitf:. Explain why this does not mean that an infinite number of transitions can
occur in a finite time.

6.5) A.tlwo state Markov process has transition rates 9p = 1, 455 = 2. Find P, (1), the
probability that X(t) = 1 given that X(0) = 0. Hint: You can do this by solving a single

first order differential equation if you make the right choice between forward and back-
ward equations,

6.6) a) Consider a two state Markov process with qp; = M and q,, = J. Find the eigen-
values and eigenvectors of the transition rate matrix [Ql.
b) Use (25) to solve for [P(1)].
_ €) Use the Kolmogorov forward equation for Py, (t) directly to find P (t) for £20.
Hint: You don’t have to use the equation for P (t); why? E
d) Check your answer in (b) with that in (c).
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6.7) Consider an irreducible Markov process with n states and assume that the transi-
tion rate matrix [Q] = [V][A][V]! where [V] is the matrix of right eigenvectors of [Q],
{A] is the diagonal matrix of eigenvalues of {Q], and the inverse of [(Q} is the matrix of
left eigenvectors.

a) Consider the sampled time approximation to the process with an increment of
size 8, and let [Wi] be the transition matrix for the sampled time approximation. Ex-
press [Wy] in terms of [V] and [A].

b) Express [W]" in terms of [V] and [A].

¢) Expand [W;]" in the same form as (25).

d) Lettbe an integer multiple of §, and compare [W; 18 to [P(t)]. Note: What you
see from this is that A, in (25) is replaced by(1/8)In( 1«1—57\1). For the steady state term, A,
= (), this causes no change, but for the other eigenvalues, there is a change that vanishes
as 6—0.

6.8) Consider the three state Markov process below; the number given on edge (i, j) is
the transition rate from i to J, q;;. Assume that the process is in steady state.

a) s this process reversible?
b} Find p,, the time average fraction of time spent in state i for each 1.
¢) Given that the process is in state i at time t, find the mean delay from t until the
process leaves state i. . . _
d) Find x, the time average fraction of all transitions that go into state i for eac.:i.a i.
e) Suppose the process is in steady state at time t. Find the steady state probability
that the next state to be entered is state 1.
f) Given that the process is in state 1 at time t, find the mean delay until the pro-
cess first returns to state 1.
g) Consider an arbitrary irreducible finite state Markov process in which q;; = q;,
for all i, j. Either show that such a process is reversible or find a counter example.

6.9) a) Consider an M/M/1 queueing system with arrival rate A, service rate y, > A.
Assume that the queue is in steady state. Given that an arrival occurs at time t, find the
probability that the system is in state i immediately affer time t.

b) Assuming FCFS service, and conditional on i customers in the system xmmech-
ately after the above arrival, characterize the time until the above customer departs as a
sum of random variabies.
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¢) Find the unconditional probability density of the time until the above customer
departs. Hint: You know (from splitting a Poisson process) that the sum of a geometri-
cally distributed number of 11D exponentially distributed random variables is exponen-
tially distributed, Use the same idea here.

6.10} A small bookie shop has room for at most two customers. Potential customers
arrive at a Poisson rate of 10 customers per hour; they enter if there is room and are
turned away, never to return, otherwise, The bookie serves the admitted customers in
order, requiring an exponentially distributed time of mean 4 minutes per customer.

a) Find the steady state distribution of number of customers in the shop.

b) Find the rate at which potential customers are turned away.

¢} Suppose the bookie hires an assistant; the bookie and assistant, working to-
gether, now serve each customer in an exponentiaily distributed time of mean 2 min-
utes, but there is only room for one customer (i.e., the customer being served) in the
shop. Find the new rate at which customers are turned away.

6.11) Consider the job sharing computer system illustrated below. Incoming jobs ar-
rive from the left in a Poisson stream. Each job, independently of other jobs, requires
pre-processing in system I with probability Q. Jobs in system 1 are served FCFS and
the service times for successive jobs entering system 1 are IID with an exponential
distribution of mean 1/j1,. The jobs entering system 2 are also served FCFS and succes-
sive service times are IID with an exponential distribution of mean 1/11,. The service
times in the two systems are independent of each other and of the arrival times. Assume
that i, > AQ and that 1, > A. Assume that the combined system is in steady state.

Q System 1 p| System 2
R pe H ‘ H2 —

1.0

a) Is the input to system I Poisson? Explain.

b) Are each of the two input processes coming into system 2 Poisson? Explain

¢} Considering the input process to system 1 and the two input processes to sys-
tem 2, which are independent of each other? Explain carefully.

d) Give the joint steady state PMF of the number of jobs in the two systems.
Explain briefly.

e} What is the probability that the first job to leave system 1 after time t is the
same as the first job that entered the entire system after time t?

f} What is the probability that the first job to leave system 2 after time t both
passed through system 1 and arrived at system 1 after time t?
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6.12) Consider the following combined queueing system. The first queune system is M/
M/1 with service rate p,. The second queue system has IiD exponentially distributed

service times with rate 1.

System 1 Q
A » Q System 2 Qb
1 100,972 B e a—— | y

1-Q; 1-Q2
[:’ e o M(Partd)

Each departure from system 1 independently goes to system 2 with probability Q, and
leaves the system with probability 1-Q, System 2 has an additional Poisson input of
rate A, independent of inputs and outputs from the first system. Each departure from
the second system independently leaves the combined system with probability Q, and
re-enters system 2 with probability 1-Q,. For parts (a), (b), (c) assume that Q, = 1 (i.e.,
there i8 no feedback).

a) Characterize the process of departures from system 1 that enter system 2 and
characterize the overall process of arrivals to system 2.

b) Assuming FCFS service in each system, find the steady state distribution of
time that a customer spends in each system.

¢) For a customer that goes through both systems, show why the time in each
system is independent of that in the other; find the distribution of the combined system
time for such a customer.

d) Now assume that Q, < 1. Is the departure process from the combined system
Poisson? Which of the three input processes to system 2 are Poisson? Which of the
input processes are independent? Explain your reasoning, but do not attempt formal
proofs.

6.13) Suppose a Markov chain with transition probabilities {P;} is reversible, For
some given state, state 0 to be specific, suppose we change the transition probabilities
out of state 0 from {Py} to {Py'}. Assuming that {Py} for all i, j with i#0are un-
changed, what is the most general way in which we can choose {Pyg'} so as to maintain
reversibility? Your answer should be explicit about how the steady state probabilities
{m;} are changed. Your answer should also indicate what this problem has to do with
uniformization of reversible Markov processes, if anything. Hint: Given {Py;} a single
additional parameter will suffice to specify {Py;'} for all j.

6.14) Consider the closed queueing network in the figure below. There are three cus-
tomers who are doomed forever to cycle between node 1 and node 2. Both nodes use
FCFS service and have exponentially distributed IID service times. The service times
at one node are also independent of those at the other node and are independent of the
customer being served. The server at node i has mean service time 1/ , 1= 1, 2.
Assume to be specific that Ly < .
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Node 1

Node 2
K2 B e

a) The system can be represented by a four state Markov process. Draw its graphical
representation and label it with the individual states and the transition rates between
them.

b) Find the steady state probability of each state.

¢) Find the time average rate at which customers leave node 1.

d) Find the time average rate at which a given customer cycles through the sys-
tem.

e} Is the Markov process reversible? Suppose that the backward Markov process
is interpreted as a closed queueing network. What does a departure from node 1 in the
forward process correspond to in the backward process? Can the transitions of a single
customer in the forward process be associated with transitions of a single customer in
the backward process?

6.15) Consider an M/G/1 queueing system with last come first serve (LCFS) service.
That is, customers arrive according to a Poisson process of rate A. A newly arriving
customer interrupts the customer in service and enters service itself, When a customer
is finished, it leaves the system and the customer that had been interrupted by the
departing customer resumes service from where it had left off. For example, if cus-
tomer 1 arrives at time 0 and requires 2 units of service, and customer 2 arrives at time
I and requires 1 unit of service, then customer 1 is served from time 0 to I; customer 2
is served from time 1 to 2 and leaves the system, and then customer 1 completes service
from time 2 to 3. Let X; be the service time required by the i customer; the X; are IID
random variables with expected value E[X]; they are independent of customer arrival
times. Assame A B[X] < 1.

a) Find the mean time between busy periods (i.e., the time until a new arrival
occurs after the system becomes empty).

b} Find the time average fraction of time that the system is busy,

¢) Find the mean duration, E[B], of a busy period. Hint: Use (a) and (b).

d) Explain briefly why the customer that starts a busy period remains in the sys-
tem for the entire busy period; use this to find the expected system time of a customer
given that that customer arrives when the system is empty.

e) Is there any statistical dependence between the system time of a given cus-
tomer (i.e., the time from the customer’s arrival until departure) and the number of
customers in the systein when the given customer arrives?
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f) Show that a customer’s expected system time is equal to E[B]. Hint: Look care-
fully at your answers to (d) and {(e).

g) Let C be the expected system time of a customer conditional on the service
time X of that customer being 1. Find (in terms of C) the expected system time of a
customer conditional on X=2, Hint: Compare a customer with X=2 to two customers
with X=1 each; repeat for arbitrary Xe=x.

h) Find the constant C. Hint: Use (f) and (g); don’t do any tedious calculations.

6.16) Consider a queusing system with two classes of customers, type A and type B.
Type A customers arrive according to a Poisson process of rate A, and customers of
type B arrive according to an independent Poisson process of rate Az. o

a) The queue has a single server with exponentiaily distributed IID service times
of rate W > Ap+Ag. First come first serve service (FCES) is used. Characterize the. de-
parture process of class A customers; explain carefully. Hint: Consider the combined
arrival process and be judicious about how to select between A and B types of custom-
ers. . '

b) Suppose now that last come first serve (LCES) service is used (i.e., whenever a
new customer arrives, the server drops what it is doing and starts work on the new
customer;, when a customer departs, the server resumes service on the most recently
arrived remaining customer). Characterize the departure process of class A customers;
explain carefully. _ '

¢) Suppose now that LCFS service is used, but that now the single server requires
independent exponentially distributed service times of rate Ha fm: clasg A customefs
and rate pg for class B customers. Model this as a Markov process in which the state is
the ordered set of customer classes in the queue and in service (see figure). What are
the transition rates out of the state shown below? Is this process reversible? Assume

(Aa/ita) + (pfpp) < 1.

BA-—D®

Sample state of queueing system with type A customer most recently arrived, another type
A next most recent, and customer B least recent.

d) Characterize the departure process of class A customers for the system of part
(c); expiain carefully.

6.17) Consider a k node Jackson type network with the modification that each node i
has s servers rather than one server. Each server at i has an exponentially distributed
service time with rate 1;. The exogenous input rate to node i is 1; = A¢Qq and eaf:h
output from i is switched to j with probability Q; and switched out of {he system with
probability Qi (as in the notes). Let &, 1 i <Kk, be the solution, for given A, to

A= é‘ﬁ AQys
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I'<j<kand assume that A; < sy; 1 <1 <k, Show that the steady state probability of
state m is

p(m) = [T (m)

i=1

where pj(m) is the probability of state m in an (M,M,s) queue. Hint: Simply extend the
argument in the text to the multiple server case.

6.18) Suppose a Markov process with the set of states A is reversible and has steady
state probabilities p;; ieA. Let B be a subset of A and assume that the process is changed
by setting gy = O for all ie B, j ¢ B. Assuming that the new process (starting in B and
remaining in B) is irreducible, show that the new process is reversible and find its
steady state probabilities,

6.19) Consider a sampled time M/D/m/m queueing system, The arrival process is Ber-
noulli with probability A<<1 of arrival in each time unit. There are m servers; each
arrival enters a server if a server is not busy and otherwise the arrival is discarded. If an
arrival enters a server, it keeps the server busy for d units of time and then departs; d is
some integer constant and is the same for each server,

Let n, 0snsm be the number of customers in service at a given time and let x; be
the number of time units that the i™ of those n customers (in order of arrival) has been
in service. Thus the state of the system can be taken as (n, x) = (n, X{s X321 ey Xg) where
0snsm and 1$x;<x;< ... <x,=d.

Let A(n, x) denote the next state if the present state is (n, x) and a new arrival
enters service. That is,

A(n, x) = (n+1, L xp+1, %41, L, xp# 1) forn<mand x, < d (le)
A, x)={n, 1, x;+1, xp+1, ..., %, +1) forn €mand x, = d (2e)

That is, the new customer receives one unit of service by the next state time, and all the
old customers receive one additional unit of service. If the oldest customer has re-
ceived d units of service, then it leaves the system by the next state time, Note that it is
possible for a customer with d units of service at the present time to leave the system
and be replaced by an arrival at the present time (i.e., (2¢) with n=m, x=d). Let B(n, x)
denote the next state if either no arrival occurs or if 2 new arrival is discarded.

B(n, x) = (n, x3+1, x9+1, ..., x,+1) for x,<d (3e)
B(n, x) = (n-1, X;+1, X541, ..., xo+1) for x,=d {4e)

a) Hypothesize that the backward chain for this system is also a sampled time M/
D/m/m queueing system, but that the state (n, xy, ..., X,) (0Sn<m, 1€X,<x< ... <x,<d)
has a different interpretation: n is the number of customers as before, but x; is now the

remaining service required by customer i. Explain how this hypothesis leads to the
following steady state equations:




