180 Chapter 5—Markov Chains with Countably Infinite State Spaces

We can evaluate Pg; by observing that the departure of that first arrival leaves j custom-
ers in this system iff j customers arrive during the service time of that first custotner;
i.e., the new state doesn’t depend on how long the server waits for a new customer to
serve, but only on the arrivals while that customer is being served. Letting g(u) be the

density of the service time,

i S exni-M .
Poj= | e u)jfxp( W du; 20 a2

5.9 SUMMARY

This chapter extended the finite state Markov chain results of Chapter 4 to the case of
countably infinite state spaces. It also provided an excellent example of how renewal
processes can be used for understanding other kinds of processes. In section 5.1, the
first passage time random variables were used to construct renewal processes with
renewals on successive transitions to a given state. These renewal processes were used
to rederive the basic properties of Markov chains using renewal theory as opposed to
the algebraic Perron-Frobenius approach of Chapter 4. The central result of this was
theorem 3, which showed that, for an irreducible chain, the states are positive recurrent
iff the steady state equations, (14), have a solution. Also if (14) has a solution, it is
positive and unique. We also showed that these steady state probabilities are, with
probability 1, time averages for sample paths, and that, for an ergodic chain, they are
limiting probabilities independent of the starting state.

We found that the major complications that result from countably infinite state
spaces are, first, different kinds of transient behavior, and second, the possibility of
aull recurrent states. For finite state Markov chains, a state is transient only if it can
reach some other state from which it can’t return. For countably infinite chains, there is
also the case, as in figure 5.1 for p>1/2, where the state just wanders away, never to
return. Null recurrence is a limiting situation where the state wanders away and returns
with probability 1, but with an infinite expected time. There is not much engineering
significance to null recurrence; it is highly sensitive to modeling details over the entire
infinite set of states. One usually uses countably infinite chains to simplify models; for
example, if a buffer is very large and we don’t expect it to overflow, we assume it is
infinite. Finding out, then, that the chain is transjent or null recurrent simply means that
the modeling assumption was not very good,

Branching processes were introduced in section 5.2 as a model to study the growth
of various kinds of elements that reproduce. In general, for these models {assuming
po>0). there is one trapping state and all other states are transient, Figure 5.3 showed
how to find the probability that the trapping state is entered by the n™ generation, and
also the probability that it is entered eventually. If the expected number of offspring of
an element is at most 1, then the population dies out with probability 1, and otherwise,
the population dies out with some given probability g, and grows without bound with

probability 1-q.
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- We next‘studied birth death Markov chains and reversibility. Birth death chains are
w;dely.used in queueing theory as sample time approximations for systems with Pois-
son an:wals and various generalizations of exponentially distributed service times. B
1(}19({)(51;&}3}3_ tzeil: steady sta?er probabilities if positive recurrent, and shows the conditioqr;
ey e ;:):Si ttl viyrzzi r};{;iatt’we recurrent. We showed that these chains are reversible if

Tt.leorcms. 5 and 6 provided a simple way to find the steady state distribution of
revemlble chains and also of chains where the backward chain behavior could be hy-
potl}eslzec.l or deduced. We used reversibility to show that M/M/1 and M/M/m Markgv
chains sa‘nsfy Burke’s theorem for sampled time-—namely that the departure process i
Bernoulli, and t‘hat the state at any time is independent of departures before that timeS

Round robin queueing was then used as a more complex example of how to usc;,
the backwar'd process to deduce the steady state distribution of a rather complicated
Markov chain; this also gave us added insight into the behavior of queueing Is) stems
and allowed us to show that, in the processor sharing limit, the distribution of nyumb
of customers is the same as that in an M/M/1 queue. .

Finally, semi-Markov processes were introduced. Renewal theory again provided
the ke}C to analyzing these systems. Theorem 8 showed how to find the steady state
?;;?;blilt;eg (:; these processes, and it was shown that these probabilities coz;fd be

reted both as time avera i i i ition ti
Lt oroabiom e e ges and, in the case of non-arithmetic transition times, as

For further reading on Markov chains with countably infinite state spaces, see
{Fel66], {Ros83], or [Wol89]. Feller is particularly complete, but Ross and Wolf,f are
somewhat more accessible. Harris, [Har63] is the standard reference on branching pro-
cesses and Kelly, [Kel79] is the standard reference on reversibility. The matef?ll}
round robin systems is from [ Yat90] and is generalized there. ‘ oo

EXERCISES

5.1) Let {Pi}.; i,j 20} bg the set of transition probabilities for a countably infinite
Markov c-ham. For each i, j, let ng(n) be the probability that state j occurs sometime
between time 1 aa.d ninclusive, given X =i. For some given j, assume that {x,; k20} is
aset of non-negative numbers satisfying x, =P, + %, . P, x,. Show that x, 2 F, l(t;l) Eor all
n and i, and hence that x, > Fij(oc) for all i. Hint: use inciuction. s '

5}.}2) a) For the Markov chgin in figure 5.1, show that, for p21/2, Fy(e0} = 2(1-p) and
sh ow that F,(eo) = [(1-p)/p]' for i21. Hint: First show that this solution satisfies (5)and
then show ti?at- (5) ha§ no smaller solution (see exercise 5.1). Note that you have shown
that ;)h)e chain is transient for p>1/2 and that it is recurrent for p=1/2
Under the same conditions as part (a}, show that F, ' i
N ’ ij+>° E 2 B =.
equals [(1-p)/p]™ for i>j, and equals 1 for i<j. §() cquals 200-p) for =1

5};:.”) ‘ijet i be‘a transient state in a Markov chain and let j be accessible from i. Show
that 1is transient also. Interpret this as a form of Murphy’s law (if something bad can
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happen, it will, where the bad thing is the lack of an eventual return). Note: Give a
direct demonstration rather than using lemma 1.

5.4) Consider an irreducible positive recurrent Markov chain, Co.nsider the rene\f«'ffll
Process {N}j(t); 20} where, given X =j, ij(t) is the number of um.es that state j is
visited from time 1 to t. For each i20, consider a renewal reward function Ri(t) equal to
1 whenever the chain is in state i and equal to 0 otherwise. Let w; be the time average
reward, N

a) Show that 7, = 1/T; for each i with probability 1. .

b) Show that 2.z = 1. Hint: Consider X, T, for any integer M. o

¢) Consider a renewal reward function R,(t) that is 1 whenever Ehf.? chain is in
state i and the next state is state j. R, (t) = 0 otherwise. Show that the time average

. reward is equal to TP, with probability I. Show that 7, = 2, m Py forallk.

5.5) Let {X; n20} be a branching process with X,=1. Let Y,0? be the mean and
variance of the number of offspring of an individual. ‘ .
a) Argue thatlim X exists with probability 1 and either has the value 0 (with
robability P, (=o}) or the value « (with probabili_ty L-P ().
P b) Shov»iothat VAR(X }=6*Y " Y " DAY - 1) for Y #I and VAR(X ) = no?
for Y =1.

5.6) There are n states and for each pair of states i and j, a positive numl?er di;. = dji is
given. A particle moves from state to state in the following manner: Gl‘ven that the
particle is in any state i, it will next move to any j#i with probability P, given by

P, o= dl}

1 2 " d i

Assume that P, = 0 for all i. Show that the sequence of positions is a reversible Markov
chain and find the limiting probabilities.

5.7) Consider a reversible Markov chain with transition probabilities Pi. and iimttn‘ig
probabilities 7. Also consider the same chain truncated to the states 0, 1, ..., M. That is,
the transition probabilities {Pli;'} of the truncated chain are

elsewhere
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Show that the truncated chain is also reversible and has limiting probabilities given by

_ i ZjM;o Py

;=
1 thonk Zlh:r«OPkm

5.8) A Markov chain (with states {0, 1, 2,...,J-1} where ] is either finite or infinite)
has transition probabilities {Pij; i,j 20}. Assume that Pﬂj. >0 forafl j>0and Pj(} >0 for
all j > 0. Also assuime that for all i, k, P,.jinkPki = PikijPji.

a) Assuming also that all states are positive recurrent, show that the chain is re-
versible and find the steady state probabilities {m} in simplest form.

b) Find a condition on {Poj; j20} and { Py; i20} that is sufficient to ensure that all
states are positive recurrent.

5.9} a) Use the birth and death mode] described in figure 5.4 to find the steady state

probability mass function for the number of customers in the system (queue plus ser-
vice facility) for the following queues:

1) M/M/1 with arrival probability A8, service completion probability |18,

if) M/M/m with arrival probability A5, service completion probability iud for i
servers busy, 1<i<m.

iif) M/M/ee with arrival probability A8, service probability iud for i servers, As-
sume & so small that iud < 1 for all i of interest,

Assume the system is positive recurrent.

b) For each of the queues above give necessary conditions (if any) for the states in
the chain to be (i) transient, (ii) nuil recurrent, (iii) positive recurrent.
¢} For each of the queues find:

L. = (steady state} mean number of customers in the system.
L = (steady state) mean number of customers in the queue.
W = (steady state) mean waiting time in the system.

Wq = (steady state) mean waiting time in the queue.

5.10) a) Given that an arrival occurs in the interval (nd, (n+1)3) for the sampled time
M/M/1 model in figure 5.5, find the conditional PMF of the state of the system at time
nd {assume n arbitrarily large and assume positive recurrence),

b) For the same model, find the expected number of customers seen in the system
by the first arrival after time n. Note: The purpose of this exercise is to make you
cautious about the meaning of “the state seen by a random arrival.”

5.11) Find the backward transition probabilities for the Markov chain model of age in

figure 5.2. Draw the graph for the backward Markov chain, and interpret it as a model
for residual life.
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5.12) Consider the sample time approximation to the M/M/1 queue ig figure 5.5.

a) Give the steady state probabilities for this chain (no explanations or calcula-
tions required—just the answer).

In parts (b) to (g) do not use reversibility and do not use Burke's t‘heorem. LetX,
be the state of the system at time nd and let D_ be a random variable taking on the value
1 if a departure occurs between nd and (n+1)8, and the value 0 if no departure occurs.
Assume that the system is in steady state at time nd.

b) Find P(X =i, D, =j) fori20,j=0,1

¢) Find P(D =1}

d) Find P(X =i {D =1) foriz 0 . o '

¢) Find P(X ;=i | D_=1) and show that X_,, is statistically mde'pen.dent c:f ‘Dn.
Hint: Use part (d); also show that P(X_, =i) = P(X_, ;=i | D =1) for all i=0 is sufficient
to show independence. . ‘

f) Find PX_,,=i, D, =j | D,) and show that the pair of variables (X
statistically independent of D .

g Foreachk>1, find P(X =i, D_ =i 1D . 1 D, D) anq show ttlxat the
pair (X ., D) is statistically independent of (D_,; 1, D 10, -+, D). Hint: Use mducf—
tion on k; as a substep, find P(X_, =i | D, =1 Dy, 5 - D) and show that X, is
independent of D, 1, D100 - Dy

h} What do your results mean relative to Burke's theorem?

n+1

Dm«l) is

n+l?

5.13) Let (X, n 2 1} denote an irreducible Markov chain having a countable state
space. Now consider a new stochastic process {Y, n 20} thz?.t iny acF:epts values of
the Markov chain that are between 0 and some integer m. For instance, if m=3 and X,
=1,X,=3,X,=5X,=6X,=2then¥ = I,Y?=3,Y3u2.

a) Is {Y, n 20} a Markov chain? Explain briefly. o ‘

b) Let (A denote the proportion of time that {X , n 2 1} is in state j. If > Oforall
j, what proportion of time is {Y,, n20} in each of the states G, 1, ..., m?

¢) Suppose {X, } is null recurrent and let m,(m), i = 0,1, ..., m denote the long-run
proportions for {Y,, n20}. Show that

m(m) = n.(m)E[time the X process spends in j between returns to i, j#i

5.14) Verify that (48) is satisfied by the hypothesized solution to 7t in (52). Also show

that the equations involving the idle state ¢ are satisfied.

5.15) Replace the state m = (m, z,, ..., Z_)) in section 5.6 with an expanded state m =
(m, 2y, Wys Zy, W, ooy 2y W) Where m and {z;; 1<iSm} are as beferr-f and wy, Wy, .., W
are the original service requirements of the m customers. o

a) Hypothesizing the same backward round robin system as hypothesnzf:d in sec~
tion 5.6, find the backward tramsition probabilities and give the corresponding equa-
tions to (46—49) for the expanded state description. ‘
b) Solve the resulting equations to show that
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i m
T = ﬁ‘?{%) ;!;1 f(Wj)

©) Show that the probability that there are m customers in the system, and that
those customers have original service requirements given by"wl, ey W 1S

A8\ 1
P(m, wy,..,wy) = n¢(m) H (wi-Df(w)
j:

d) Given that a customer has original service requirement w, find the expected
time that customer spends in the system.

5.16) A taxi alternates between three locations, When it reaches location 1 it is equally
likely to go next to either 2 or 3. When it reaches 2 it will next go to 1 with probability
1/3 and to 3 with probability 2/3. From 3 it always goes to 1. The mean time between
locations i and j are t, = 20, t3 =30, t); = 30 (t; =t

i) What is the (limiting) probability that the taxi’s most recent stop was at loca-
tioni,i=1, 2, 3?7

i) What is the (limiting) probability that the taxi is heading for location 2?

1ii) What fraction of time is the taxi traveling from 2 to 3, Note: Upon arrival at a
location the taxi immediately departs.

5.17) Consider an M/G/1 queueing system with Poisson arrivals of rate A and ex-
pected service time E[X]. Let p = AE{X] and assume p < 1. Consider a semi-Markov
process model of the M/G/1 queueing system in which transitions occur on departures
from the queueing system and the state is the number of customers immediately fol-
lowing a departure.

a) Suppose a colleague has calculated the steady state probabilities { p;} of being
in state i for each i20. For each i20, find the steady state probability #; of state i in the
embedded Markov chain. Give your solution as a function of P, py, and py.

b) Calculate p, as a function of p,

¢) Find m;as a function of p and p,.

@) Is p; the same as the steady state probability that the queueing system contains
1 customers at a given time? Explain carefully.

5.18) Consider an M/G/1 queue in which the arrival rate is A and the service time
distribution s uniform (0,2W) with AW < 1. Define a semi-Markov chain foliowing
the framework for the M/G/1 queue in section 5.8.

a) Find P j;j =0

b) Find P fori>0;j=i-1
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5.19) Consider a semi-Markov process for which the embedded Markov chaip is irre-
ducible and positive recurrent. Assume that the distribution of inter-renewal intervals
for one state j is arithmetic with span d. Show that the distribution of inter-renewal
intervals for all states is arithmetic with the same span.

Chapter 6

Markov Processes with
Countable State Spaces

6.1 INFRODUCTION

A Markov process with a countable state space is a special case of a semi-Markov
process in which, first, the interval between successive transitions has an exponential
distribution, and second, that interval is independent of the next state. Thus, we can
take the set of possible states as {0, 1, 2, ...} and the process as {X(t), t20}, where for
each real 120, X(t) is the state of the process at time t. The random variables 8y, S, ...
denote the successive epochs at which the process makes state transitions, and X, de-
notes the state entered at time S,, i.e., X, = X(S,) and X(t) = X, for §,<t<8,,;. Let
3¢=0, and let X, = X(0) = X(S;) denote the initial state. The embedded Markov chain
{X n20} has transition probabilities {3, i20, 20}, and we assume that Py=0 for ali i
(i.e., there are no self transitions). The assumption Py=0 will be removed later when we
talk about uniformized Markov processes, The intervals U, = S,-S;.1 between succes-
sive transition epochs satisfy
P(Upgx | Xpopd, Xp=)) = 1 - explevin) )
where, for each i, v; is a positive number called the zransition rate out of state 1. Condi-
tional on X, the interval U, is independent of X, and also independent of all earlier
inter-transition intervals and states,

Let Y(t) denote the residual time from t until the next transition after t. Given that
X(t)=1, the memoryless property of the exponential distribution implies that Y(t) has an
exponential distribution, 1 - exp(-vit), and that Y(t) is independent of the next state and
independent of X(t) for all <t. Thus, for all j=,

PIY()=x, X(e+Y(0))=j | X(O)=i, {X(1); T<t}] = Py l-exp(-vix)] 2)
For x sufficiently small, the probability of two transitions in (0,x] is negligible, so the

probability on the feft is that of a transition to state j in (0,x]. Using 8 in place of x, this
becomes
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