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These bound the error if g® is estimated from the n® stage of the Bellman algorithm.
The lower bound is non-decreasing in n, the upper bound is non-increasing, and both.
converge to gB with increasing n. ‘

In comparing the use of the Bellman and Howard algorithms for calculating g, it
should be noted that the iterations are fairly similar (at least if A is chosen to maximize
each component of the inequality in step 4 of the Howard algorithm). The difference is
that the Howard algorithm calculates a new relative gain vector w® at each iteration,
whereas the Bellman algorithm uses the previous value of expected aggregate gain in
place of the relative gain. The Howard algorithm requires on the order of J3 steps to
find w® (i.e., the computation tequired to solve J simultaneous linear equations) and
requires on the order of J(2; K;) steps for the check in step 2 and the maximization in
step 3. The Bellman algorithm requires on the order of J(2; Kj) steps for the entire
iteration. Thus if there are many decision alternatives and few states, the computation
per iteration of the two algorithims is similar, whereas with many states and few alter-
natives, the Howard algorithm requires much more computation per iteration. Natu-
rally, this does not help in seeing how many iterations are required with each algo-
rithm, and there seems to be no easy way to answer this question.

Another related question is how the Howard algorithm compares with the brute
force method of calculating g for every policy A. Finding g* for a policy requires
finding the steady state probability vector 74 for [PA], which is of comparable com-
plexity to finding w®. The number of different policies is K;Ka ... Ky, which is the
number of times that a steady state probability must be calculated in the brute force
method. In the Howard algorithm, on the other hand, each iteration yields a better
policy than the one before. If one assumes (with little real justification) that the im-
proved policy at each iteration is a random equiprobable choice among all possible
improved algorithms, then it turns out (see [Ros83] section 4.6) that the expected num-
ber of required iterations is approximately equal to the natural log of the total number
of policies.

4.7 SUMMARY

This chapter has developed the basic results about finite state Markov chains from a
primarily algebraic standpoint. It was shown that the states of any finite state chain can
be partitioned into classes, where each class is either transient or recurrent, and each
class is periodic or aperiodic. If the entire chain is one recurrent class, then the Frobenius
theorem, with all its corollaries, shows that A=1 is an eigenvalue of largest magnitude
and has positive right and left eigenvectors, unique within a scale factor. The left eigen-
vector (scaled to be a probability vector) is the steady state probability vector. If the
chain is also aperiodic, then the eigenvalue A=1 is the only eigenvalue of magnitude 1,
and all rows of [P]® converge geometrically in n to the steady state vector. This same
analysis can be applied to each aperiodic recurrent class of a general Markov chain,
given that the chain ever enters that class.

For a periodic recurrent chain of period d, there are d-1 other eigenvalues of mag-
nitude 1, with all d eigenvalues uniformly placed around the unit circle in the complex
plane. Exercise 4.13 shows how to interpret these eigenvectors, and shows that [pyd
converges geometrically as n—yeo,

Chapter 4—Finite State Markov Chains 137

For an arbitrary finite state Markov chain, if the initial state is transient, then the
Markov chain will eventually enter a recurrent state, and the probability that this takes
more than n steps approaches zero geometrically in n; exercise 4.10 shows how to find
the probability that each recurrent class is entered. Given an entry into a particular
recurrent class, then the results above can be used to analyze the behavior within that
class.

The results about Markov chains were extended to Markov chains with rewards.
As with renewal processes, the use of reward functions provides a systematic way to
approach a large class of problems ranging from first passage times to dynamic pro-
gramming. The key result here is theorem 5, which provides both an exact expression
and an asymptotic expression for the expected aggregate reward over n stages.

Finally, the results on Markov chains with rewards were used to approach Markov
decision theory. We developed the Bellman dynamic programming algorithm, and also
investigated the optimal stationary policy. Theorem 9 demonstrated the relationship
between the optimal dynamic policy and the optimal stationary policy. This section
provided only an introduction to dynamic programming. We omitted all discussion of
the relation between optimal stationary and dynamic policies when the stationary chains
contain transients and multiple recurrent classes; it appears that these situations are
best treated on a case by case basis. Also we omitted discounting (in which future gain
is considered worth less than present gain because of interest rates), and we omitted
infinite state spaces.

For an introduction to vectors, matrices, and linear algebra, see any introductory
text on linear algebra such as Strang [Str88). Gantmacher [Gan59] has a particularly
complete treatment of non-negative matrices and Perron-Frobenius theory. For further
reading on Markov decision theory and dynamic programming, see Bertsekas, [Ber§7].
Howard, {How60] and Bellman {Bel57] are of historic interest and provide very acces-
sible introductory material,

EXERCISES

4.1} a} Prove that, for a finite state Markov chain, if P,;>0 for some i in a recurrent
class A, then class A is aperiodic.

b) Show that every finite state Markov chain contains at least one recurrent set of
states. Hint: Construct a directed graph in which the states are nodes and an edge goes
from i to  if i—j but i is not accessible from j. Show that this graph contains no cycles,
and thus contains one or more nodes with no outgoing edges. Show that each such node
is in a recurrent class. Note: this result is not true for Markov chains with countably
infinite state spaces,

4.2) A transition probability matrix P is said to be doubly stochastic if

D Py=1foralli; Y Py=1forallj
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That is, both the row and the column sums each equal 1. If a doubly stochastic chain
has J states and is ergodic (i.e., has a single class of states and is aperiodic), calculate its

steady siate probabilities.

4.3) a) Find the steady state probabilities Ty, ... Ty for the Markov chain below.
Express your answer in terms of the ratio p = p/q. Pay particular attention to the special
case p=1.
b) Sketch 7y, ..., ;. Give one sketch for p=1/2, one for p=1, and one for p=2.
¢) Find the limit of 7ty as k approaches <o; give separate answers for p<l, p=1, and
p>1. Find limiting values of 7, ; for the same cases.

p

I-p

4.4) Answer each of the following questions for each of the following non-negative
matrices [A]

100

YRR i) (1212 0
11

0 12172

a) Find [A]" in closed form for arbitrary n>1.
b) Find all eigenvalues and all right eigenvectors of [A].
¢) Use (b) to show that there is no diagonal matrix {A] and no invertible matrix

{Q] for which [A][Q] = [Q]IA].
d) Rederive the result of part (c) using the result of (a) rather than (b).

4.5)a) Find the steady state probabilities for each of the Markov chains in figure 420of
section 4.1. Assume that all clockwise probabilities in the first graph are the same, say
p, and assume that P, 5 = P4 in the second graph.

b) Find the matrices [P? for the same chains. Draw the graphs for the Markov
chains represented by [P]?, i.e., the graph of two step transitions for the original chains.
Find the steady state probabilities for these two step chains. Explain why your steady
state probabilities are not unique.

¢) Find lim,_,..[P}?" for each of the chains.

4.6) Show that the graph for an ergodic Markov chain of J states must contain at least
one cycle with t<I-1 nodes. Show that, for any J23, there is an ergodic Markov chain
for which the graph consists of exactly one cycle of length J and one cycle of length J-
1. Show that, for this chain, B" =0 for some 1, j, and forn = (J-1)%. The point of this
problem is to show that theorem 3 is relatively tight.
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fi.’l) ‘a) Show that if x) and x, are real or complex numbers, then Ix;+x5l = 1% 1HIx,l
implies that for some B, Bx,, and Bx, are both real and non-negative.

‘ b) Show from this that if the inequality in (17) is satisfied with equality, then there
is some f3 for which Bx; = Ix;| for all i.

4.8Ya) LetA b.e an eigenvalue of a matrix [A], and let v and 7 be right and left eigen-
vectors respectively of A, normalized so that 7ov = 1, Show that

[[A] - Avrt) = [A) - A2y,

b) Show that [[A]" - A7t} [[A] - Avre] = [AJ™*] - Amvre,
¢) Use induction to show that {[A] - Avrt]® = [A]" - APy,

4.9) Let {P] be the transition matrix for a Markov chain with one recurrent class of
states and one or more transient classes. Suppose there are T recurrent states, numbered -
1 to], and K transient states, J+1 to J+K. Thus [P] can be partitioned as [P] = gr g .

tr Fat
{P1" [0

a) Show that [P]" can be partitioned as [P]® = n
{Pij} [Pyl "

. That is, the blocks

on the diagonal are simply products of the corresponding blocks of [P}, and the lower
left block is whatever it turns out to be.

b} Let Q; be the probability that the chain will be in a recurrent state after K
transitions, starting from state i, ie, Q; = Z P Pi!f . Show that Q; > O for all transient i.

c} Let Q be the minimum Q; over all transient i and show that Pi”-K < {1-Q)® for
all transient i,j (i.e., show that [P,]" approaches the all zero matrix [0] wiih increasing n).

d) Let 7 = (71, 70,) be a left eigenvector of [P] of eigenvalue 1 (if one exists).
Show that 7, = @ and show that 7t must be positive and be a left eigenvector of [P,].
Thus show that 7t exists and is unique (within a scale factor). r

e) Show that e is the unique right eigenvector of [P} of eigenvalue 1 (within a
scale factor).

4.10} Generalize exercise 4.9 to the case of a Markov chain [P] with r recurrent classes
and one or more transient classes. In particular,

" a) Show that [P] has exactly r linearly independent left eigenvectors, =), £®

’ - , ] [IRELE )
7T of taxgenvalue 1, and that the i can be taken as a probability vector that is positive
on the i recurrent class and zero elsewhere. :

lz)} Show that [P] has exactly r linearly independent right eigenvectors, v, v@®,

e W .o.f eigenvalue 1, and that the i¥ can be taken as a vector with v equal to the
probability that recurrent class i will ever be entered starting from state j.

4.11) Prove theorem 6A. Hint: Use theorem 6 and the results of exercise 4.9.
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lim,_, [P = X, vOr®.

has the block form given by

0 (P

a)} Show that [P1¢ has the form

Qo0 -
P~ |0 Q2

. .

c o -

where [Q] =[PPy .[Pg]{P1)...[Pi ).

7 GD[P,, ] for i<d and & ‘9P = & V{P;].

[Pyl O B

.

0 0 (P

that 7 is a left eigenvector of {P] of eigenvalue e,

4.12) Generalize exercise 4.11 to the case of a Markov chain [P} with r aperiodic re-
current classes and one ar more transient classes. In particular, using the left and right
eigenvectors T, T@, ..., #® and v(V,..., v® of exercise 4.10, show that

4.13) Suppose a Markov chain with matrix [P} is irreducible and periodic with period
d and let T;, 15i<d, be the i subclass in the sense of theorem 2, Assume the states are
numbered so that the first J; states are in T}, the next I, are in Ty, and so forth. Thus {P]

0

where {P;] has dimension J; by Jy, for i<d and Jy by T, for i=d.

0

b) Show that {Qy] is the matrix of an ergodic Markov chain, so that with the eigen-
vectors defined in exercises 4.10 and 4.12, lim,_,..[P]™ = ¥; v®rl), _
¢) Show that & ©, the left eigenvector of [Q;] of eigenvalue | satisfies & V{P;] =

d) Let o= %’Ia"/m_l« and let 0 = (R M), & Weok, f Dok Deld-Deky Show

k

4.14) Assume a friend has developed an excellent program for finding the steady state
probabilities for finite state Markov chains. More precisely, given the transition matrix
{P], the program returns limy . Py" for each i. Assume all chains are aperiodic.

a) You want to find the expected time to first reach a given state k starting from a
given state m for a Markov chain with transition matrix [P]. You modify the matrix to
[P where Py = 1, Py = 0 for j#m, and Pjj= Py otherwise. How do you find the
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desired first passage time from the program output given [P'] as an input? Hint: The
times at which a Markov chain enters any given state can be considered as renewals in
a {perhaps delayed) renewal process.

b) Using the same {P'] as the program input, how can you find the expected num-
ber of returns to state m before the first passage to state k?

¢} Suppose, for the same Markov chain [P] and the same starting state m, you
want to find the probability of reaching some given state n before the first passage to k.
Modify {P] to some [P"] so that the above program with P" as an input allows you to
easily find the desired probability.

d} Let P(X(0)=i) =, 1<i<J be an arbitrary set of initial probabilities for the same
Markov chain [P] as above. Show how to modify {P] to some [P"'] for which the steady
state probabilities allow you to easily find the expected time of the first passage to state k.

4.15) Suppose A and B are each ergodic Markov chains with transition probabilities
{PAE-Aj} and P!ii,Bj} respectively. Denote the steady state probabilities of A and B by
{na;} and {my,} respectively. The chains are now connected and modified as shown
below. In particular, states A; and B, are now connected and the new transition prob-
abilities P' for the combined chain are given by

PIAl-BI =g, P'AIIA_E (1'8)PAE,Aj for aHA}
P’BE.A; = 6, P'B],Bj Eed (IHS)PBg.Bj fOl' all B_;

All other transition probabilities remain the same. Think intuitively of € and 3 as being
small, but do not make any approximations in what follows. Give your answers to the
following questions as functions of €, 8, {7} and {mg}.

Chain A Chain B

a) Assume that >0, 8=0 (i.e., that A is a set of transient states in the combined
chain). Starting in state A,, find the conditional expected time to return to A, given that
the first transition is to some state in chain A,

b) Assume that£>0, 8=0, Find T, g, the expected time to first reach state B, start-
ing from state A|. Your answer should be a function of & and the original steady state
probabilities {1, } in chain A.

> o v»w@“%%
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¢) Assume £>0, 8>0. find Tj 4, the expected time to first reach state Ay, starting in
state B,. Your answer should depend only on 8 and {#g,}.

d) Assume e>0 and 8>0. Find P'(A), the steady state probability that the com-
bined chain is in one of the states {A;} of the original chain A.

) Assume £50, 3=0. For each state Aj# A, in A, find v Ap the expected number of
visits to state A, starting in state A,, before reaching state’B;. Your answer should
depend only on € and {74, }. : 3

f) Assume £>0, 8>0. For each state A, in A, find 'y, the steady state probability
of being in state A;in the combined chain. Hint: Be careful in your treatment of state

Ayl

4.16) For the Markov chain with rewards in figure 4.5

a) Find the steady state reward per stage, g, using the steady state probability
vector . .

b} Let wy = 0 and use (34) to find w,.

¢) Assume g in (34) is an unknown. Again, let w; = 0 and solve (34) for wp and g.

d) Now let w, be an arbitrary real number y. Again use (34) to solve for W and g.
How does your value of g compare to the values found in (a) and (c). Explain your
answer. -

€) Let wy=0, but take Py, as an arbitrary probability. Find g and W2 again and give
an intuitive explanation of why Py, effects the asymptotic relative gain of state 2.

4.17) Consider the Markov chain below:

1/2

a) Suppose the chain is started in state i and goes throughn transition.s; let vi(n) be
the expected number of transitions (out of the total of n) until the cpam enters the
trapping state, state 1. Find an expression for v(n) = (v;(n), vo(n), v5(n)}.in terms of V(!-l-
1) (take vy(n) = O for all n). Hint: view the system as a Markov reward system; what is

the value of r? . ‘
b) Solve numerically for lim,_,., v(n). Interpret the meaning of the elements v; in

the solution of Eq. (23).
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¢} Give a direct argument why (25) provides the solution directly to the expected
time from each state to enter the trapping state,

4.18) Prove lemma 4; for the stationary policy result, use either induction on (29) or
use (31) directly. For the dynamic policy, use induction on (41).

4.19) George drives his car to the theater, which is at the end of a one-way street.
‘There are parking places along the side of the street and a parking garage that costs $5
at the theater. Each parking place is independently occupied or unoccupied with prob-
ability 1/2. If George parks n parking places away from the theater, it costs him n cents
(in time and shoe leather) to walk the rest of the way. George is myopic and can only
see the parking place he is currently passing.

If George has not already parked by the time he reaches the n'" place, he first
decides whether or not he will park if the place is unoccupied, and then observes the
place and acts according to his decision. George can never go back and must park in the
parking garage if he has not parked before.

a) Model the above problem as a 2 state Markov decision problem. In the “driv-
ing” state, state 2, there are two possible decisions: park if the current place is unoccu-
pied or drive on whether or not the current place is unoccupied.

b) Find v¥*(n), the minimum expected aggregate cost for n stages (i.e., immedi-
ately before observation of the n' parking place) starting in state i = 1 or 2; it is suffi-
cient to express v*;(n) in times of v¥{n-1). The final costs, in cents, at stage 0 should be
vo(0) = 500, vi({) = 0.

¢} For what values of n is the optimal decision the decision to drive on?

d) What is the probability that George will park in the garage, assuming that he
follows the optimai policy?

4.20} Consider a dynamic programming problem with two states and two possible
policies, denoted A and B, in state 2; there is no choice of policies in state 1;

12 7/8 12
5

112
A
5=0 18 A= -

L 304
o M g
a) Find the steady state gain per stage, g* and gP, for stationary policies A and B.
b) Find the relative gain vectors, wA and w®, for stationary policies A and B.
¢} Suppose the final reward, at stage 0, is v{(0) = 0, v5(0) = v. For what range of v
does the dynamic programming algorithm use decision A in state 2 at stage 17
d) For what range of v does the dynamic programming algorithm use decision A

in state 2 at stage 27 at stage n?
e} Find the optimal gain v*,(n) and v*(n) as a function of stage n assuming v = 10.




