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problem solving techniques. The strong law of large numbers requires mathematical
maturity, and might be postponed to Chapter 3 when it is first used.

There are too many texts on elementary probability to mention here, and most of
them serve to give added understanding and background to the material here. [Ros94]
and [Dra67] are both quite readable. [Kol50] is of historical interest (and is also read-
able) as the translation of the 1933 book that first put probability on a firm mathemati-
cal basis. [Fel68] is an extended and elegant treatment of elementary material from a
mature point of view.

EXERCISES

L.1) The text shows that, for a non-negative random variable X with distribution
function Fy(x), E[X] = fy° [1-Fx(x)]dx.

a) Write this integral as a sum for the special case in which X is a non-negative
integer random variable.

b) Generalize the above integral for the case of an arbitrary (rather than non-
negative) random variable Y with distribution function Fy(y); use a graphical argu-
ment,

¢) Find E[IY1] by the same type of argument,

d) For what value of o is E[Y-ol} minimized? Use a graphical argument again.

1.2) Let X be a random variable with distribution function Fy(x). Find the distribution
function of the following random variables.

a) The maximum of n IID random variables with distribution function Fy(x).

b) The minimum of n {ID random variables with distribution B (x).

¢) The difference of the random variables defined in (a) and (b); assume X has a
density f,(x).

1.3)a) LetX,, X,, ..., X, be random variables with expected values X b wens Xn. Prove
that E[X +..+X ] = X 1+...+Y o+ DO not assume that the random variables are indepen-
dent.

b) Now assume that X,, ..., X_are statistically independent and show that_the
expected value of the product is equal to the product of the expected values.

) Againassuming that X, ..., X_ are statistically independent, show that the vari-
ance of the sum is equal to the sum of the variances.

1.4) Suppose X, X,, X,, ... is a sequence of continuous IID random variables. X, for
a given n>1, is called a local minimum of the sequence if X =X, X, <X, . Find the
probability that X, is a local minimum. Hint: No computation is necessary—use sym-
metry.

L.5) Let X, X, ..., X, ... be a sequence of independent identically distributed (1ID)
continuous random variables with the common probability density function fy(x); note
that P(X = ) = 0 for all ot and that P(X| = X,) = 0.
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a) Find P(X; £ X,) (give a numerical answer, not an expression; no computation
is required and a one or two line explanation should be adequate).

b) Find P(X, £ X,; X, £ X,) (in other words, find the probability that X, is the
smallest of X,, X,, X; again, think—don’t compute).

¢) Let the random variable N be the index of the first r.v. in the sequence to be less
than X; that is, P(N=n) = P(X, £ X,; X =X . X sX X >X). Find P(N > n) as
a function of n. Hint: Generalize part (b).

d) Show that E[N] = co.

n-1*

1.6) a} Assume that X is a discrete random variable taking on values a,, a,, ..., and let
Y = g(X). Let b, = g(a,), i21 be the ith value taken on by Y. Show that E[Y] = 2. b,
Py(bi) = Eig(ai) P X(ai)' )

b) Let X be a continuous random variable with density f,(x) and let g be differen-
tiable and monotonic increasing. Show that E[Y} =] yiy(y) dy = ] (0O (x) dx.

1.7) a) Show that, for uncorrelated random variables, the expected value of the prod-
uct is equal to the product of the expected values (X and Y are uncorrelated if

B[(X-EIX](Y-E[Y])] = 0).

b) Show that if X and Y are uncorrelated, then the variance of X + Y is equal to
the variance of X plus the variance of Y.

¢) Show thatifX,, ..., X are uncorrelated, the the variance of the sum is equal to
the sum of the variances.

d} Show that independent random variables are uncorrelated.

e) Let X,Y be identically distributed ternary valued random variables with the
probability assignment P(X = 1) = P(X = -1} = 1/4; P(X = 0) = 1/2. Find a simple joint
probability assignment such that X and Y are uncorrelated but dependent.

f) You have seen that the moment generating function of a sum of independent
random variables is equal to the product of the individual moment generating func-
tions, Give an example where this is false if the variables are uncorrelated but depen-
dent.

1.8) Suppose X has the Poisson PMF, P(X = n) = A" exp(-A)/n! for n20 and Y has the
Poisson PMF, P(Y = n) = 4" exp(-\W)/n! for n>0. Find the distribution of Z=X +Y and
find the conditional distribution of Y conditional on Z = n.

1.9) a) Suppose X, Y and Z are binary random variables, each taking on the value 0
with probability 1/2 and the value | with probability 1/2. Find an example in which X,
Y, Z are statistically dependent but are pairwise statistically independent (i.e., X, Y are
statistically independent, X, Z are statistically independent, and Y, Z are statistically
independent). Give Py, (x,y.2) for your example.

b) Is pairwise statistical independence enough to ensure that
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E[Hil Xi] = H:l_—_-j E[Xi]

for a set of random variables Xpoa X2
1.10) Show that E[X] is the value of z that minimizes E[(X-z)?].

L11} Acomputer system has n users, each with a unique name and password. Due to
a software error, the n passwords are randomly permuted internally (i.e., each of the n!
possible permutations are equally likely). Only those users lucky enough to have had
their passwords unchanged in the permutation are able to continue using the system.
a) What is the probability that a particular user, say user 1, is able to continue
using the system?
b) What is the expected number of users able to continue using the system? Hint:

Let X, be a random variable with the value 1 if user i can use the system and 0 other-
wise,

1.12) Suppose the random variable X is continuous and has the distribution function
F;(x). Consider another random variable Y = F(X). That is, for any sample point o

such that X(o) = x, we have Y(o)) = Fy(x). Show that Y is uniformly distributed in the
interval O to 1. :

1.13) Let Z be an integer vatued random variable with the PMF P {n)= l/k for Osnsk-1.
Find the mean, variance, and moment generating function of Z. Hint: The elegant way
to do this is to let U be a uniformly distributed continuous random variable over (0,1]

that is independent of Z. Then U+Z, is uniform over (0,k]. Use the known results about
U and U+Z to find the mean, variance, and mgf for Z.

1.14) Let (X, ; n 2 1} be a sequence of independent but not identically distributed
random variables, We say that the weak law of large numbers holds for this sequence if
for all £>0

S EIS,]
i

s £
n

nl_jgnm P( 2 (-:) =0 where§, =X X X (a)

a} Show that (a) holds if there is some constant A such that VAR(X ) <Aforalin.

b) Suppose that VAR(X ) £ A n'* for some o < 1 and for all n. Show that (a)
holds in this case.

1.15) Let {X;; i1} be IID Bernoulli random variables, Let P(X;=1) = 8, P(X=0)= 1-3.
LetS =X, +..+X . Let m be an arbitrary but fixed positive integer. Think! then evalu-
ate the following and explain your answers:
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a) li P(8 =1)
LT n8-m§i‘$nﬁ+m S

. ¥
b) lim P(S =)
E? OSJE;}S-HH !
i n{ﬁ-l!m)SiSn{ﬁH/m)

1.16) Let {X.: i=1} be IID random variables with mean 0 and infinite variance. As-
sume that BE%)&J“"} = for some given h, 0<h<1 and some given B. Let S =X +..+X .

a) Show that P(X|2y) S By’

b; X;zb
b) Let {F?Ei; i=1} be truncated variables X; ={ X, -b<X;sb
-b; X;€-b
~2 1-h
Show that B[X 1< 2B8

i-h
Hint: For a non-negative r.v. Z, E[ZQ] = f:Z z P(Z2z) dz (you can establish this, if
you wish, by integration by parts).
¢) Let § = X, +..+ X, Show that P(S, # S ) <n B o'

Rs)ﬁ{_zb_ﬂw : ]

+ —————
(I-hne2  pth

S
d) Show that P(

—n
n

e) Optimize your bound with respect to b. How fast does this optimized bound
approach O with increasing n?

1.17) A town starts a mosquito control program and we let the random variable Z, be
the number of mosquitos at the end of the nfyear(n=0,1,2,..). Let X_bethe groyvth
rate of mosquitos in year n; ie., Z, = X Z ; n 2 1. Assume that {X; n2 1} 15145?
sequence of IID random variables with the PMF P(X = 2) = 1/2:, PX =1/2)= 1/4;
P(X=1/4) = 1/4. Suppose that Z, the initial number of mosquitos, 18 some known con-
stant and assume for simplicity and consistency thatZ, can take on non-integer values.
a) Find E{Z ] as a function of n and find lim _ E{Z]. o
b) Let W_=log, X,. Find E[W ] and Ellog, (Z /Z)las a function'o n, bl
¢) There is a constant 0. such that lim, _ (1/m){log,(Z /Z,)] = o with probability
1. Find ¢ and explain how this follows from the strong .ia}w of large numbers ;
d) Using (c), show that lim__, Z = B with probability 1 for some constant } an
eva]gtziﬂain carefully how the result in (a) and the result in (d) are possible. Wha;
you should learn from this problem is that the expected value of the log of a prod}lct 0
1ID random variables is more significant that the expected value of the product itself.
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1.18} Use figure 1.4 to verify Eq. (20). Hint: Show that yP(Yzy) < Iz%y zdF, (z) and
show that lim__ | zdPF,(z) = 0if E[Y] is finite.

1.19} Show that I1 ., (1-1/m} = 0. Hint: Note that (1-1/m) = exp(in(1-1/m) < exp(-1/m),
NOTES

1. One must add the axioms of set theory to this and specify the class of events,

2. A set is countable if it has a finite number of elements or if its elements can be put into
one to one correspondence with the positive integers. See any elementary text on set theory.

3. The sup, or supremum, of a set of numbers is the smallest number greater than or equal
to all members of the set. It is essentially the maximum of the set, but takes care of situations
where the max doesn’t exist. For example, the sup of real numbers x satisfying x<2 is 2, whereas
there is no maxinum x less than 2. The inf, or infimum, is defined similarly as the largest number
less than or equal to all members of the set, It is essentially the minimum of the set,

4. Feller, An Introduction to Probability Theory and its Application, vol. I and 11, Wiley,
1968 and 1966,

3. Central limit theorerns also hold in mary of these more general situations, but they usu-
ally do not have quite the generality of the laws of large numbers.

6. Proofs and sections marked with an asterisk, while instructive, can be omitted without
toss of continuity,

Chapter 2

Poisson Processes

2.1 INTRODUCTION

A Poisson process is a simple and widely used stochastic process for modeling Fhe
times at which arrivals enter a system. We usually look at arrivals after some starting
time, say t=0. Figure 2.1 illustrates some of the different ways to ?haractlerize randoz'n
arrivals over the positive time axis. The sequence of times at which azjnvals oceur is
denoted by the random variables {S, S, ...}. We usually refer to-a point on the time
axis at which something happens as an epoch, and thus we refer to S, as the epoch of
the n® arrival, or the n® arrival epoch. In principle, an arrival process can be character-
ized by a rule specifying the joint distribution functions of {8y, 8, ..., 8,} for a@l nzl,
but usually these distribution functions are derived in terms of other random variables.

X3

< P

Xy
e \
X3 (© ! [{3)
e t t]
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Figure 2.1.  An arrival process and its arrival epachs (5,, S5, ...), its inter-arrival intervals
Xy, Xz, ..J, and its counting process ({N({t); £01).

An arrival process over the positive time axis can also be described by the il:tei'-
arrival intervals, denoted {X;, Xy, ...}. For n22, X, is the interval between the n-1° .em:;ll
the n'* arrival epoch, i.e., X, = $;-S,.1. By convention, X;=8;. It follows that the n
arrival epoch can be expressed in terms of the inter-arrival intervals as

Sa= 0, Xi (1)

A rule specifying the joint distribution function of {X;, ..., X, ) for all n21 spec.iﬁes th.e
arrival process. Renewal processes, the topic of Chapter 3, are usually specified di-

31
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8441 el
P(Si-i-I)Si-i-l | N(I)=I’l, SiﬁSi) = T-_ST— (30)

We note that this is independent of S, - S, ;. As a check, one can find the conditional
densities from (30) and multiply them all together to get back to (24) (see Exercise
2.21). One can also find the distribution of each S, conditioned on N(t)=n but uncondi-
tioned on 8, §,, ..., S, ;. The density for this is calculated by looking at n uniformly
distributed random variables in (0,t]. The probability that one of these lies in the inter-
val (x, x-+dt] is (n dt)/t. Out of the remaining n-1, the probability that i-1 lie in the

interval (0,x] is given by the binomial distribution with probability of success x/t. Thus
the desired density is

R e (M ) T
fsi(x IN(t)=n) dt = w—“—mmt""(nmi)s(i-l)l 7

x1(t-x) !

fsi()( IN()=n) = W (31)

2.6 SUMMARY

We started the chapter with three equivalent definitions of a Poisson process-—firstas a
renewal process with exponentially distributed inter-renewal intervals, second as a sta-
tionary and independent increment counting process with Poisson distributed arrivals
in each interval, and third essentially as a limit of a Bernoulli process. We saw that each
definition provided its own insights into the properties of the process, We emphasized
the importance of the memoryless property of the exponential distribution, both as a
useful tool in problem solving and as an underlying reason why the Poisson process is
so simple.

We next showed that the sum of independent Poisson processes is again a Poisson
process. We also showed that if the arrivals in a Poisson process were independently
routed to different locations with some fixed probability assignment, then the arrivals
at each of these locations formed independent Poisson processes. This ability to view
independent Poisson processes either independently or as a splitting of a combined
process is a powerful technique to find almost trivial solutions to many problems,

It was next shown that a non-homogeneous Poisson process could be viewed as a
(homogeneous) Poisson process on a non-linear time scale. This allows all the proper-
ties of (homogeneous) Poisson properties to be applied directly to the non-homoge-
neous case, The simplest and most useful result from this is (20), showing that the
number of arrivals in any interval has a Poisson PME This result was used to show that
the number of customers in service at any given time 1 in an M/Gfeo gueue has a Pois-
son PMF with a mean approaching A times the expected service time as T—oo,

Finally we looked at the distribution of arrivals conditional on n arrivals in the
interval (0,t}. It was found that these arrivals had the same joint distribution as the order
statistics of n uniform IID random variables in (0,t]. By using symmetry and going
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back and forth between the uniform variables and the Poisson process arrivals,. we
found the distribution of the interarrival times, of the arrival epochs, and of various

, NS s
conditional distributions,

EXERCISES

2.1) a) Find the Erlang densities fsn(t) by convolving fy(x) = hexp(-Ax) with itself n

times. .
b) Find the moment generating function of X (or find the Laplace transform of
f,(x)), and use this to find the moment generating function (or Laplace transform) of 5,

=X +X +..4X . Invert your result to find fg (t). _ _ _
1c:)XIZRind the;1 mean, variance, and momen’é generating funcu.on of Zt\I(t), as glvgn by
(9). Show that the sum of two independent Poisson random variables is again Poisson.

2.2) The purpose of this exercise is to give an alternate derivationl of the Poisson distri-
bution for N(1), the number of arrivals in a Poisson process up to time t; let . be the rate

of the process.
a) Find the conditional probability P(N(t) = n | S = 1) for all T <t
b) Using the Erlang density for S, use (a) to find P(N(t) = n}.

2.3) Assume that a counting process {N(t); t 2 0} has the independent and stationary

increment properties and satisfies (9) (for all ¢ > 0). . o
a) Le:) X, be the epoch of the first arrival and X be the interarrival time between

s -Ax
the n-1 and the n™ arrival. Show that P(X>x) = ™. e
b) Let S, ,be the epoch of the n-1% arrival. Show th_at-P(X,px I8, =1 =™
c) Shownthat, for each n>1, P(X_>x) =e™ and X, is independent of S, .
d) Argue that X_ is independent of X, X5, ..., X 1.

2.4) Assume that a counting process {N(t); t 2 O} bas the independent and stationary
increment propetties and satisfies (forall t > 0, a>0

P(R(t+8) =0y =1- A8 + o(B)
P(R(t,t+8) = 1} = A8 + o(8)
PNt t4+8) > 1) = 0(8)

= e " (1) = ~AF,(T).
a) Let E (1) = P(N(1) = 0) and show that F';(1) o™
b)) Shou? that X, the time of the first arrival, is exponential with parameter A.
¢) LetF (1) = P(N(t, t+1) =01 S, = t) and show that I:“"n(’t) =M (D).
d) Argug that X_is exponential with parameter % and independent of earlier ar-
rival times.

2.5) Let t>0 be an arbitrary time, let Z, be the duration of the in.tcrvai from t until the
next arrival after t, and let Z_, for each m>1, be the interarrival time from the epoch of
the m-1% arrival after t until the m™ arrival.
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a) Given that N(t) = n, explain why Z m = Bpggg form>land Z, =X -t+8
b) Conditional on N(t)=n and S,=1, show that Z,, Z,, ... are IiD. "
¢) Show that Z,,Z,, .. are lID.

2.6) Ccn.sider a “baby Bernoulli” approximation to a Poisson process. X, is the num-
ber of arrivals in the interval (i8-8, i8], and we assume {X,;i21} is 1ID with P(X=1)=
8A, anc? P(X;=0) = 1-8). Let N(k8) = X +X,+..+X, be the number of arrivals in (0, k]
according to the baby Bernoulli approximation.

a) Show that P(N(k8)=n) = ( ﬁ)(lﬁ)“(l—?xﬁ) ken

. b} Lett=k8, and consider holding t fixed as §—0 and k-0, Show that for any
given n,

PN(=n) = (14v(y e

where v(8) is a function of § satisfying lim, Lo V(&) =0,

Hint: Show that Teny! = kD exp{zhf In{l - i)} = (1+v(8) kD

Show that (1-A5) K0 = exp[(k—n)ln(i—lﬁ)] = (1+V(B)) exp(-A).

2.7) Let .{N(t); t 2 0} be a Poisson process of rate A.

a} Find the joint probability mass function (PMF) of N(t), N(t+s) for s>0.

b} Find B{N(t)-N(t+s)] for s>0,

¢) Find B[N (t,.t,)- N(t,,t,)] where N(t,7) is the number of arrivals in (tt] andt, <
ty <ty <,

2.8) An experiment is independently performed N times where N is a Poisson random
variable of mean A. Let {a,, a,, ..., a, }be the set of elementary outcomes of the experi-
ment and let P,, 1<k<K, denote the probability of a.

a) Let N, denote the number of experiments performed for which the output is a,,
Find the PMF for N, (1 £i£K). Hint: no calculation is necessary. ' l

b) Find the PMF for N, +N,

¢) Find the conditional PME for N ; given that N =n.

d) Find the conditional PMF for N, + N, given that N = n.

e} Find the conditional PMF for N given that N, =n,.

2.9) Starting from time 0, northbound buses arrive at 77 Mass. Avenue according to a
Poisson process of rate A. Passengers arrive according to an independent Poisson pro-
cess of rate L. When a bus arrives, all waiting customers instantly enter the bus and
subsequent customers wait for the next bus,

a) Find the PMF for the number of customers entering a bus (more specifically,
for any given m, find the PMF for the number of customers entering the m® bus),
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b) Find the PMF for the number of customers entering the m™ bus given that the
interarrival interval between bus in-1 and bus m is x.

¢) Given that a bus arrives at time 10:30 PM; find the PMF for the number of
customers entering the next bus.

d) Given that a bus arrives at 10:30 PM and no bus arrives between 10:30 and 11,
find the PMF for the number of customers on the next bus,

¢) Find the PMF for the number of customers waiting at some given time, say
2:30 PM (assume that the processes started infinitely far in the past). Hint: Think of
what happens moving backward in time from 2:30 PM.

f) Find the PMF for the number of customers getling on the next bus to arrive
after 2:30. Hint: this is different from part (a); look carefully at part (e). _

g) Given that I arrive to wait for a bus at 2:30 PM, find the PMF for the number of
customers getting on the next bus.

2.10) Eq. (31) in chapter 2 gives fg(x | N(t) = n), the density of random variable S,
conditional on N(t) = n for n = i. Multiply this expression by P(N(t) = n) and sum over
n to find fg(x); verify that your answer is indeed the Erlang density.

2.11) Consider generalizing the bulk arrival process in figure 2.4. Assume that the
epochs at which arrivals occur form a Poisson process {N(t); t20} of rate A. At each
arrival epach, S , the number of arrivals, Z, satisfies P(Z,=1} = p, P(Z =2) = 1-p. The
variables Z are IID.

a) Let {N,(t); t20}be the counting process of the epochs at which single arrivals
occut. Find the PMF of N (t) as a function of t. Similarly, let {N,(t); t20}be the count-
ing process of the epochs at which double arrivals occur. Find the PMF of N,(t) as a
function of t.

b) Let {Ng(t); t20} be the counting process of the total number of arrivals, Give
an expression for the PMF of Ny(t) as a function of t.

2.12) a) For a Poisson counting process of rate A, find the joint probability density of
$,,8,, ..., S, conditional on S, = t. Use the same technique for the condition S =t asin
(24) for the condition N(t) = n,

b) Find P(X, > 11§ =1).

¢) FindPX,>1!8 =t)forlsisn

d) Find the density Fsi(xiSH =t)for 1 <i<n-1.

¢) Give an explanation for the striking similatity between the condition N(t) =n-
1 and the condition S = t.

2.13) a) For a Poisson process of rate A, find PNt} =n 18§, =17) fort>t,n> L.
b} Using this, find fs1 (TIN{t)=n)
¢) Check your answer against (25).

2.14) Consider a counting process in which the rate is a random variable A with prob-
ability density f,(A) = o &% for & > 0. Conditional on a given sample value A for the
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rate, the counting process is a Poisson process of rate A (i.e., nature first chooses a
sample value A and then generates a sample function of a Poisson process of that rate
A).

a} What is P(N(t)=n | A=A), where N (t) is the number of arrivals in the interval
(0, t] for some given t > 0?

b) Show that P(N(t)=n), the unconditional PME for N(t), is given by

P(N(t)=n)= ﬁ“

¢) Find f A(A T N(t)=n), the density of A conditional on N{t)=n.

d) Find E[A | N(t)=n) and interpret your result for very small t with n = 0 and for
very large t with n large.

e} Find E[A | N(t)=n, Sy, S, S,). Hint: Consider the distribution of S, .. S,
conditional on N(1) and A. Find E[A [ N(t)=n, N(t)=m] for some T < t.

2.15)a) UseEq.(31)of chapter 2 to find E[S,IN(t) = n]. Hint: In integrating x fsi(xlN(t)
= n), compare this integral with £ (XIN(t) = n+1) and use the fact that the latter ex-
pression is a probability density.

b) Find the second moment and the variance of S, conditional on N(t) = n. Hint:
Extend the previous hint.

¢) Assume that n is odd, and consider i=(n+1)/2, What is the relationship between
S,, conditional on N(t) = n, and the sample median of n IID uniform random variabies.

d) Give a weak law of large numbers for the above median.

2.16) Suppose cars enter a one-way infinite highway at a Poisson rate A. The ith car to
enter chooses a velocity V; and travels at this velocity. Assume that the V/'s are inde-
pendent positive random variables having a common distribution F. Derive the distri-
bution of the number of cars that are located in the interval (0,a) at time t.

2.17) Consider an M/G/oo queue, i.e., a queue with Poisson arrivals of rate A in which
each arrival i, independent of other arrivals, remains in the system for a time X,, where
{X; i21} is a set of IID random variables with some given distribution function F(x).

You may assume that the number of arrivals in any interval (t, t+€) that are still in
the system at some later time 7 > t+e is statistically independent of the number of

arrivals in that same interval (t, t+€) that have departed from the system by time 1.

a) Let N(t) be the number of customers in the system at time 1. Find the mean,
m(7), of N(t) and find P(N(1) = n).

b) Let D(t) be the number of customers that have departed from the system by
time 7. Find the mean, E{(D(1)}, and find P(D(1) =d).

¢) Find P(N(7 )=, D(1) = d).

d) Let A(t) be the total number of arrivals up to time 7. Find PN(T) = n 1 A(t) = a).

) Find P(D(1+£)-D(1) = d),
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2.18) The voters in a given town arrive at the place of voting according to a Ifoisson
process of rate A = 100 voters per hour. The voters inegendentIy vote for candidate A
and candidate B each with probability 1/2. Assume that the voting starts at time 0 and
continues indefinitely. .

a} Conditional on 1000 voters arriving during the first 10 hours of voting, find the
probability that candidate A receives n of those votes. 3

b) Again conditional on 1000 voters during the first 10 hours, find the probability
that candidate A receives n votes in the first 4 hours of voting. . ‘

¢) Let T be the epoch of the arrival of the first voter voting for candidate A. Find
the density of T.

d) Find the PMF of the number of voters for candidate B who arrive before the
first voter for A. ‘

e) Define the n™ voter as a reversal if the n™ voter votes for a different candidate
than the n-1*. For example, in the sequence of votes AA B AA B B, the third, fourth,
and sixth voters are reversals; the third and sixth are A to B reversals and the fourth is
aB to Areversal. Let N(t) be the number of reversals up to time ¢ (t in hours). Is {N(D);
20} a renewal process? Is it a delayed renewal process? Explain.

f} Find the expected time (in hours) between reversals.

g) Find the probability density of the time between reversals.

h) Find the density of the time from one A to B reversal to the next A to B rever-
sal.

2.19) Let {N,(t); t =0} be a Poisson counting process of rate A. Assume ti?at the arriv-
als from this process are switched on and off by arrivals from a second independent
Poisson process {N,(t); t 20} of rate .

Arrivals for
Rate & | (N0 120}
X— XX ¥ X H—XX X%

Arrivals for
{1\3(0;20}
Rate
(;In X X X X On
+— -2y -
Arrivals for
{Ny (1); 20}
X XXX

Let {N,(1); t 2 0} be the switched process; that is N A(t) includes -the arrivals from
{N,(D); t 2 0} during periods when N,(t) is even and excludes the arrivals from [Nty
t2 0} while N, (t) is odd.
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.a) Find the PMF for the number of arrivals of the first process, {N, (1); t 2 0},
during the n® period when the switch is on.
b) Given that the first arrival for the second process occurs at epoch 1, find the
conditional PMF for the number of arrivals of the first process upto 1.
¢) Given that thfa nurnber of arrivals of the first process, up to the first arrival for
the second process, is n, find the density for the epoch of the first arrival from the
second process.

d) Find the density of the interarrival time for {N, (1) t20}.

2.20) Let us model the chess tournament between Fisher and Spassky as a stochastic
process. Let X, 121, be the duration of the i game and assume that {X,;iz1}isasetof
1ID exponentially distributed rv's each with density f(x) = e, Su!ppose that each
game (inde;?endently of all other games, and independently of the length of the games)
is won ‘by Fisher with probability p, by Spassky with probability q, and is a draw with
probftbxlity 1-p-q. The first player to win n games is defined to be the winner, but we
consider the match up to the point of winning as being embedded in an unending se-
quence of games,

‘ a) Find the distribution of time, from the beginning of the match, until the comple-
tion of the first game that is won (i.e., that is not a draw). Characterize the process of
the number {N(t); =0} of games won up to and including time t. Characterize the
process of the number {NL(t); t20} of games won by Fisher and the number {N(1);
t20} won by Spassky. o
. b) For the remainder of the problem, assume that the probability of a draw is zero;
Le., that p+g=1. How many of the first 2n-1 games must be won by Fisher in order to
win the match?

‘ ¢) What is the probability that Fisher wins the match? Your answer should not
involve any integrals. Hint: Consider the unending sequence of games and use part (b).

' d) LetTbe the epoch at which the match is completed (i.¢., either Fisher or Spassky
wins). Find the distribution function of T.

. €) .Find the probability that Fisher wins and that T les in the interval (t,t+8) for
arbitrarily smali 8.

2.21) Using (30), find the conditional density of §, +p» conditional on N(t)=n and S=5,

and use this to find the joint density of § 12 -+ 5, conditional on N(t)=n. Verify that your
answer agrees with (24),

2.2_2) A two-dimensional Poisson process is a process of randomly oceurring special
points in the plane such that () for any region of area A the number of special points in
tha}t region has a Poisson distribution with mean AA, and (ii) the number of special
points in nonoverlapping regions is independent. For such a process consider an arbi-
trary location in the plane and let X denote its distance from its nearest special point
(where distance is measured in the usual Euclidean manner). Show that

a) P(X > t) = exp(-Axt?)

b) E[X1=1/2V}).
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2.23) 'This problem is intended to show that one can analyze the long term behavior of
queueing problems by using just notions of means and variances, but that such analysis
is awkward, justifying understanding the strong law of large numbers. Consider an M/
G/1 queue. The arrival process is Poisson with A = 1. The expected service time, E[Y],
is 1/2 and the variance of the service time is given to be 1.

a) Consider S, the time of the nth arrival, forn = 10'2. With high probability, S,
will lie within 3 standard derivations of its mean. Find and compare this mean and the
30 range.

b) LetV,_ be the total amount of time during which the server is busy with these n
arrivals {i.e., the sum of 102 service times). Find the mean and 30 range of V.

¢} Find the mean and 30 range of I, the total amount of time the server is idle up
until 8 (take I as S -V , thus ignoring any service time after S ).

d} An idle period starts when the server completes a service and there are no
waiting arrivals; it ends on the next arrival. Find the mean and variance of an idle
period. Are successive idle periods 1ID?

¢) Combine (c) and (d) to estimate the total number of idle periods up to time S,
Use this to estimate the total number of busy periods.

f) Combine () and (b) to estimate the expected length of a busy period.

NOTES

1. With this density, P(X;=0) = 0, so that we regard X; as a positive random variable. Since
events of probability zero can be ignored, the density Aexp(-Ax} for X20 and zero for x<0 is
effecively the same as the density Aexp(-Ax) for x>0 and zero for x<0,

2. 'Two processes {Ny{t); (20} and {Na(t); t20} are said to be independent if for all positive
integers k and all sets of times ¢y, ..., ty, the random variables Ny(y), ..., Ny (&) are independent of
Naftp), ..., No(ty). Here it is enough to extend the independent increment property to indepen-
dence between increments over the two processes; equivalently, one can require the inter-arrival
intervals for one process to be independent of the inter-arrival intervals for the other pracess,

3. We assume that A(t) is right continuous, i.¢., that for each t, A(t) is the limit of At+E) as
£ approaches 0 from above. This allows A() to contain discontinuities, as shown in figure 2.6,
but follows the convention that the vaiue of the function at the discontinuity is the limiting value
from the right. This convention is required in {15} to talk about the distribution of arrivals just to
the right of time ¢,




