Renewal Processes/Counting Processes/Poisson Processes

Renewal Process: Interarrival intervals are positive IID random variables. (Renewal processes are more general than it might seem)

\[N(t): \text{number of arrivals in } (0,t] \]

\[S_n: \text{Epoch of } n \text{th arrival} \]

\[\{X_1, X_2, X_3, \ldots\}: \text{interarrival intervals} \]

\[X_1 = S_1, \quad X_n = S_n - S_{n-1}, \quad S_n = \sum_{i=1}^{n} X_i \]

{Counting Processes}

\(\{N(t), t \geq 0\} \): family of random variables

\(N(t): \text{number of arrivals in interval } (0,t] \).

\(N(0) = 0 \) with probability 1

Counting Process \(\{N(t), t \geq 0\} \): family of non-negative integer valued random variables (one for each \(t \geq 0 \)) with the properties that

\[N(\tau) \geq N(t), \quad \tau \geq t \]

and \(N(0) = 0 \) with probability 1.

Equivalent: \(\{S_1, S_2, \ldots\} \) or \(\{X_1, X_2, \ldots\} \) or \(\{N(t), t \geq 0\} \).

Note: \(\{S_n \leq t\} = \{N(t) \geq n\} \)

Poisson Process

- Renewal process with \(F_X(x) = 1 - e^{-\lambda x} \)
- \(\lambda t \): expected number of arrivals in interval of length \(t \)
- \(E[N(t)] = \lambda t \)
- Memoryless Property
 \[P(X > t + x \mid X > t) = P(X > x), \quad x \geq 0 \]
- \(P(N(t) = n) = \frac{(\lambda t)^n e^{-\lambda t}}{n!} \)

Theorem (informal statement):
(a) Interarrival interval from \(t \) until the first arrival after \(t \) is a R.V. with \(F_X(x) = 1 - e^{-\lambda x} \)
(b) This R.V. is independent of all arrival epochs before time \(t \) and \(N(\tau) \) for \(\tau \leq t \)

Stationary Increment Property

\(\{N(t), t \geq 0\} \): counting process

\(\tilde{N}(t, t') = N(t') - N(t): \text{number of arrivals in } (t, t'], t' \geq t \)

\(\tilde{N}(t, t') \) has same distribution as \(N(t' - t) \)
Independent Increment Property

\[\{N(t_1), \tilde{N}(t_2, t_1), \tilde{N}(t_3, t_2)\} \text{ independent random variables} \]

Definition Poisson Process

Definition 1: Renewal process with \(F_X(x) = 1 - e^{-\lambda x} \)

Definition 2: Counting process \(\{N(t), t \geq 0\} \) with independent and stationary increment properties, and

\[P(N(t) = n) = \frac{(\lambda t)^n e^{-\lambda t}}{n!} \]

Definition 3: Counting process \(\{N(t), t \geq 0\} \) with independent and stationary increment properties, and

\[\tilde{N}(t + \delta, t) = 0 = 1 - \lambda \delta + o(\delta) \]
\[\tilde{N}(t + \delta, t) = 1 = \lambda \delta + o(\delta) \]
\[\tilde{N}(t + \delta, t) \geq 2 = o(\delta) \]

Combining Independent Poisson Processes

Bernoulli Splitting of Poisson Processes

The two processes are independent