Human Motion Signatures: Analysis, Synthesis, Recognition

M. Alex O. Vasilescu
University of Toronto
maov@cs.toronto.edu

Approach

1. Human motion is modeled as the composite consequence of:
 - **Actions:** essence of an activity or movement encodes action invariances across different people
 - **Motion Signatures:** distinctive pattern or movement of a particular individual encodes person invariances across different actions

2. **Tensor decomposition of motion data**: spanning multiple subjects performing different actions to extract motion signatures, action parameters & eigenmotions

3. **Analysis**: Yields a multilinear generative motion model that can synthesize new motions in the distinctive styles of these individuals

4. **Synthesis**: Given motion capture samples of an individual’s walk, synthesize other motions - ascending, descending stairs - in their distinctive style

5. **Recognition**: Motion signatures are used to recognize people. Similarly, action signatures are used to recognize actions

Analysis: - Tensor Decomposition

Joint Angles \rightarrow Actions

\[\mathcal{D} = U_{\text{people}} \times_1 U_{\text{actions}} \times_2 U_{\text{joint angles}} \]

- **Tensor Decomposition**:
 \[\mathcal{D} = U_1 \times_1 U_2 \times_2 U_3 \times_3 \ldots \times_n U_n \times N U_N \]

- **N-mode SVD algorithm**:
 1. For \(n = 1, \ldots, N \), compute matrix \(U_n \) by computing the SVD of the flattened matrix \(D_{(n)} \) and setting \(U_n \) to be the left matrix of the SVD.
 2. Solve for the core tensor as follows
 \[Z = D_{(1)} U_1^T \times_1 U_2^T \times_2 \ldots \times_n U_n^T \times N U_N^T. \]

- **Mode-n Tensor Flattening**: \(\mathcal{D} \rightarrow \mathcal{D}_{(n)} \)

- **Mode-n Product** of a tensor \(A \in \mathbb{R}^{k_1 \times k_2 \times \ldots \times k_N} \) & matrix \(M \in \mathbb{R}^{k_1 \times k_2} \) is a tensor \(B \in \mathbb{R}^{k_1 \times k_2 \times \ldots \times k_N} \)

\[
B = A \times_M M \quad B_{(n)} = MA_{(n)}
\]

Recognition

Set of basis matrices that map motions into the people parameter space:

\[\mathcal{P} = Z_{\times_2} U_{\text{actions}} \times_3 U_{\text{joint angles}} \]

Set of basis matrices that map motions into the action parameter space:

\[\mathcal{A} = Z_{\times_1} U_{\text{people}} \times_3 U_{\text{joint angles}} \]

Synthesis Examples