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Week 5: The image gradientWeek 5: The image gradient



News:News:

A1 is being marked. Marks will be available on blackboard by 

next lecture.

A2 is out! We’ll check it out during the tutorial, tonight.

Vote for the alternative office hour. 

Link in the announcements section of the course website.Link in the announcements section of the course website.

Tutorial tonight on:

A2

Answers to A1 Part B, including and how estimating the 

pseudoinverse is not relevant

Paper on Accidental Pinhole and Pinspeck cameras (time 

permitting)



Curves applications: matching featuresCurves applications: matching features



Curves applications: matching featuresCurves applications: matching features



Curves applications: detection Curves applications: detection 

From: http://hci.iwr.uni-heidelberg.de/COMPVIS/research/curvature/



Curves: summary Curves: summary 



TodayToday

Images as 3D surfaces



Local Analysis of Image Patches: OutlineLocal Analysis of Image Patches: Outline

As graph in 2DAs graph in 2D As curve in 2DAs curve in 2D As surface in 3DAs surface in 3D



Local Analysis of Image Patches: OutlineLocal Analysis of Image Patches: Outline

As graph in 2DAs graph in 2D As curve in 2DAs curve in 2D As surface in 3DAs surface in 3D



Topic 4.3:Topic 4.3:

Local analysis of 2D image Local analysis of 2D image 

patchespatchespatchespatches

•• Images as surfaces in 3DImages as surfaces in 3D

•• Directional derivatives Directional derivatives 

•• Image Gradient Image Gradient 

•• Edge detection & localizationEdge detection & localization

•• Gradient Gradient extremaextrema

•• LaplacianLaplacian zerozero--crossingscrossings

•• Painterly renderingPainterly rendering

•• Local geometry at image Local geometry at image 

extremaextrema

•• The Image HessianThe Image Hessian

•• Eigenvectors & eigenvaluesEigenvectors & eigenvalues

•• Corner & feature detectionCorner & feature detection

•• Lowe feature detectorLowe feature detector

•• Harris/Forstner detectorHarris/Forstner detector



GrayGray--scale imagescale image

Image Image ⇔⇔ Surface in 3DSurface in 3D



GrayGray--scale imagescale image

Image Image ⇔⇔ Surface in 3DSurface in 3D

Image patchImage patch



Image Image ⇔⇔ Surface in 3DSurface in 3D

Image patchImage patch



Why: detectionWhy: detection

From: http://www.cs.toronto.edu/~jepson/csc420/asgn/a2_11.pdf



Why: recognitionWhy: recognition

From: http://www.robots.ox.ac.uk/~vgg/research/caltech/phog.html



Why: Why: estimationestimation

From: “Eulerian Video Magnification for Revealing Subtle Changes in the World”, Wu et al.



Estimating I(Estimating I(x,yx,y) in a neighborhood  ) in a neighborhood  



2D Taylor Series Expansion2D Taylor Series Expansion

2D Taylor series expansion near (0,0) with 3 terms:

…
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2D Taylor Series Expansion2D Taylor Series Expansion

2D Taylor series expansion near (0,0) with 3 terms:
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2D Taylor Series Expansion2D Taylor Series Expansion

2D Taylor series expansion near (0,0) with 3 terms:

…



Topic 4.3:Topic 4.3:

Local analysis of 2D image Local analysis of 2D image 

patchespatchespatchespatches
• Images as surfaces in 3D

•• Directional derivatives Directional derivatives 

• Image Gradient 

• Edge detection & localization

• Gradient extrema

• Laplacian zero-crossings

• Painterly rendering

• Local geometry at image 

extrema

• The Image Hessian

• Eigenvectors & eigenvalues

• Corner & feature detection

• Lowe feature detector

• Harris/Forstner detector



Computing Directional Image DerivativesComputing Directional Image Derivatives

1st order Taylor Series approximation

In 1-D



Computing Directional Image DerivativesComputing Directional Image Derivatives

1st order Taylor Series approximation



Computing Directional Image DerivativesComputing Directional Image Derivatives

1st order Taylor Series approximation



Computing Directional Image DerivativesComputing Directional Image Derivatives

1st order Taylor Series approximation

The first derivative tells us 

the direction of maximum 

change.change.

Its magnitude indicates the 

rate of change (like in 1D).



Computing Directional Image DerivativesComputing Directional Image Derivatives

1st order Taylor Series approximation

Now, if the function I(x,y) 

was continuous, what is the 

intensity I(x,y) along the intensity I(x,y) along the 

direction θ?θ



Computing Directional Image DerivativesComputing Directional Image Derivatives

1st order Taylor Series approximation

Now, if the function I(x,y) 

was continuous, what is the 

intensity I(x,y) along the intensity I(x,y) along the 

direction θ?

Walking in the direction of θ
can be done by multiplying a 

constant times a unit vector:

p(t) =  t * [cos(θ), sin(θ)]

θ

Unit vector!



Computing Directional Image DerivativesComputing Directional Image Derivatives

1st order Taylor Series approximation

Now, if the function I(x,y) 

was continuous, what is the 

intensity I(x,y) along the intensity I(x,y) along the 

direction θ?

So, we are really asking what 

is what is the value of: 

I( t cos(θ), t sin(θ))

θ



Computing Directional Image DerivativesComputing Directional Image Derivatives

1st order Taylor Series approximation

Now, if the function I(x,y) 

was continuous, what is the 

intensity I(x,y) along the intensity I(x,y) along the 

direction θ?

So, we are really asking what 

is what is the value of: 

I( t cos(θ), t sin(θ))

Ask the Taylor Series 

approximation!

θ



Computing Directional Image DerivativesComputing Directional Image Derivatives

1st order Taylor Series approximation

Substituting: 

θ



Computing Directional Image DerivativesComputing Directional Image Derivatives

1st order Taylor Series approximation

Substituting: 

θ

Or equivalently: 



Computing Directional Image DerivativesComputing Directional Image Derivatives

1st order Taylor Series approximation

Substituting: 

θ

Or equivalently: 

Directional Derivative of I(x,y) in 

the direction of [cos(θ), sin(θ)]



Computing Directional Image DerivativesComputing Directional Image Derivatives

Directional derivative?



Computing Directional Image DerivativesComputing Directional Image Derivatives

Directional derivative: rate of change in the given direction



Computing Directional Image DerivativesComputing Directional Image Derivatives

What is it for the red dot?



Computing Directional Image DerivativesComputing Directional Image Derivatives

Large and positive



Computing Directional Image DerivativesComputing Directional Image Derivatives

Positive



Computing Directional Image DerivativesComputing Directional Image Derivatives



Computing Directional Image DerivativesComputing Directional Image Derivatives

Close to zero



Computing Directional Image DerivativesComputing Directional Image Derivatives



Computing Directional Image DerivativesComputing Directional Image Derivatives

Negative



Computing Directional Image DerivativesComputing Directional Image Derivatives

Large and negative



Computing Directional Image DerivativesComputing Directional Image Derivatives

Directional Derivative of I(x,y) in 

the direction of [cos(θ), sin(θ)]

θ

Or in matrix form:



Computing Directional Image DerivativesComputing Directional Image Derivatives

Directional derivative in the 

direction of [cos(θ), sin(θ)]

When is this maximum?

θ



Computing Directional Image DerivativesComputing Directional Image Derivatives

Directional derivative in the 

direction of [cos(θ), sin(θ)]

Maximum

θ



Computing Directional Image DerivativesComputing Directional Image Derivatives

Directional derivative in the 

direction of [cos(θ), sin(θ)]

Maximum

θ

When is it zero?



Computing Directional Image DerivativesComputing Directional Image Derivatives

Directional derivative in the 

direction of [cos(θ), sin(θ)]

Maximum

θ

Zero



Computing Directional Image DerivativesComputing Directional Image Derivatives

Directional derivative in the 

direction of [cos(θ), sin(θ)]

Directional Derivative in any 

direction can be computed 

from these two!from these two!



Topic 4.3:Topic 4.3:

Local analysis of 2D image Local analysis of 2D image 

patchespatchespatchespatches
• Images as surfaces in 3D

• Directional derivatives 

•• Image Gradient Image Gradient 

• Edge detection & localization

• Gradient extrema

• Laplacian zero-crossings

• Painterly rendering

• Local geometry at image 

extrema

• The Image Hessian

• Eigenvectors & eigenvalues

• Corner & feature detection

• Lowe feature detector

• Harris/Forstner detector



The Image Gradient & Its PropertiesThe Image Gradient & Its Properties

In general the Image gradient is the vector of first derivatives

And the directional derivative along a direction vector ‘v’

can then be defined as:can then be defined as:



The Image Gradient & Its PropertiesThe Image Gradient & Its Properties

The directional derivative:

Is maximum when

And zero when v and                        are orthogonal.



The Image Gradient & Its PropertiesThe Image Gradient & Its Properties

The directional derivative:

Is maximum when

And zero when v and                        are orthogonal,

in which case:



The Image Gradient & Its PropertiesThe Image Gradient & Its Properties

Note then how the gradient

is the normal

vector of the isointensity

curve (aka isophote) curve (aka isophote) 

through pixel (x,y).



The Image Gradient & Its PropertiesThe Image Gradient & Its Properties

Note then how the gradient

is the normal

vector of the isointensity

curve (aka isophote) curve (aka isophote) 

through pixel (x,y).



Great, but how do we compute                            from image data?



Computing & Visualizing GradientsComputing & Visualizing Gradients

Compute                                                                                 at each pixel.



Step 1: Compute a Grayscale ImageStep 1: Compute a Grayscale Image

Start by computing a one-dimensional I(x,y) (grayscale image) by doing:

I(x,y) = 1/3 * (Red (x,y) + Green(x,y) + Blue(x,y))



Then use a 1D derivative estimation method to evaluate 

Step 2: Compute the Partial Step 2: Compute the Partial Derivative Derivative along Xalong X



Local Analysis of Image Patches: OutlineLocal Analysis of Image Patches: Outline

As graph in 2DAs graph in 2D As curve in 2DAs curve in 2D As surface in 3DAs surface in 3D



How does                             look for the image below?

Step 2: Compute the Partial Step 2: Compute the Partial Derivative Derivative along Xalong X



Step 2: Compute the Partial Step 2: Compute the Partial DerivDeriv along Xalong X



Repeat for 

Step Step 3: 3: Compute the Partial Compute the Partial Derivative Derivative along along YY



How does                             look for the image below?

Step 2: Compute the Partial Step 2: Compute the Partial Derivative Derivative along Xalong X



Step 3: Compute the Partial Deriv along YStep 3: Compute the Partial Deriv along Y



The Gradient MagnitudeThe Gradient Magnitude

Or the length of                       :

Tells us how quickly intensity is 

changing in the neighborhood of pixel 

(x,y) in the direction of the gradient.



Step 4: Compute Magnitude at Each PixelStep 4: Compute Magnitude at Each Pixel



The Gradient OrientationThe Gradient Orientation

The gradient orientation:

Tells us the direction of greatest intensity change in the 

neighborhood of pixel (x,y)



Step 5: Visualizing Magnitude & OrientationStep 5: Visualizing Magnitude & Orientation

One way of visualizing magnitude and orientation simultaneously:



Looks like gradients are useful to find corners and edges, right?



Right



Topic 4.3:Topic 4.3:

Local analysis of 2D image Local analysis of 2D image 

patchespatchespatchespatches
• Images as surfaces in 3D

• Directional derivatives 

• Image Gradient 

•• Edge detection & localizationEdge detection & localization

•• Gradient Gradient extremaextrema

•• LaplacianLaplacian zerozero--crossingscrossings

• Painterly rendering

• Local geometry at image 

extrema

• The Image Hessian

• Eigenvectors & eigenvalues

• Corner & feature detection

• Lowe feature detector

• Harris/Forstner detector



Analysing Special 2D Image PatchesAnalysing Special 2D Image Patches

How do we mathematically characterize local image patches as corners 

or edges?



Special Patches in 1DSpecial Patches in 1D



Special Patches in 1DSpecial Patches in 1D

Can we tell between these three?Can we tell between these three?



Special Patches in 1DSpecial Patches in 1D



Special Patches in 1DSpecial Patches in 1D

How does an edge look in 1D?



Special Patches in 1DSpecial Patches in 1D

How does an edge look in 1D?



Detecting & Localizing 1D Edge PatchesDetecting & Localizing 1D Edge Patches

The ideal edge can be modeled as a smooth step function

(which looks like an inflection point!)



Detecting & Localizing 1D Edge PatchesDetecting & Localizing 1D Edge Patches

The location of an edge is the same as the location of the max 

(or min) of 



Detecting & Localizing 1D Edge PatchesDetecting & Localizing 1D Edge Patches

Or equivalently, the location of the zero-crossing of 



Detecting & Localizing 1D Edge PatchesDetecting & Localizing 1D Edge Patches

A third option is to find maximum and minimum in  

Pairs of extrema

determine the 

“beginning” and the 

“end” of an edge.



Detecting & Localizing 1D Edge PatchesDetecting & Localizing 1D Edge Patches

In summary, to identify an edge (or an inflection point) one can:

Find maxima or minima 

of

Find zero crossings ofFind zero crossings of

Find maxima and 

minima of



Alright, lets find some edges!Alright, lets find some edges!



Algorithm #Algorithm #11

Pixels with maximum Gradient (magnitude)



Topic 4.3:Topic 4.3:

Local analysis of 2D image Local analysis of 2D image 

patchespatchespatchespatches
• Images as surfaces in 3D

• Directional derivatives 

• Image Gradient 

• Edge detection & localization

•• Gradient Gradient extremaextrema

• Laplacian zero-crossings

• Painterly rendering

• Local geometry at image 

extrema

• The Image Hessian

• Eigenvectors & eigenvalues

• Corner & feature detection

• Lowe feature detector

• Harris/Forstner detector



Maxima? In which direction?Maxima? In which direction?



Maxima? In which direction?Maxima? In which direction?

We don’t know!



But not all is lost. 

Let’s simply use large magnitude gradients



Step #1: Compute Gradient MagnitudeStep #1: Compute Gradient Magnitude

Using a gradient magnitude image



Step #2: Find Pixels with High Gradient MagStep #2: Find Pixels with High Gradient Mag

Mark all the pixels with                    as edges.



Step #2: Find Pixels with High Gradient MagStep #2: Find Pixels with High Gradient Mag

Trivial, works, but:

Edges are not well-localized (i.e. they are thick)

We have to choose a threshold (how?)



Step #2: Find Pixels with High Gradient MagStep #2: Find Pixels with High Gradient Mag

Can we do better? 



Step #2: Find Pixels with High Gradient MagStep #2: Find Pixels with High Gradient Mag

Can we do better? How about zero crossings from the 

second derivative?



Topic 4.3:Topic 4.3:

Local analysis of 2D image Local analysis of 2D image 

patchespatchespatchespatches
• Images as surfaces in 3D

• Directional derivatives 

• Image Gradient 

• Edge detection & localization

• Gradient extrema

•• LaplacianLaplacian zerozero--crossingscrossings

• Painterly rendering

• Local geometry at image 

extrema

• The Image Hessian

• Eigenvectors & eigenvalues

• Corner & feature detection

• Lowe feature detector

• Harris/Forstner detector



Algorithm #2: Find Extrema of 1Algorithm #2: Find Extrema of 1stst DerivativeDerivative

Here! Look! Extrema!



Step 1: Compute 2Step 1: Compute 2ndnd order Image Derivativeorder Image Derivative

Compute the 2nd order derivative



Step Step 2: 2: Compute 2Compute 2ndnd order Image Derivativeorder Image Derivative

Compute the 2nd order derivative



Step 3: Compute The Image LaplacianStep 3: Compute The Image Laplacian

Form the Laplacian

Laplacian: scalar, analog to second derivative 



Step 4: Find the Laplacian Zero Crossings Step 4: Find the Laplacian Zero Crossings 

Finding zero crossings is much easier than finding extrema

because…



Step 4: Find the Laplacian Zero Crossings Step 4: Find the Laplacian Zero Crossings 

Finding zero crossings is much easier than finding extrema

because it’s a local property!

Consider a 3x3 patch: Consider a 3x3 patch: 



Step 4: Find the Laplacian Zero Crossings Step 4: Find the Laplacian Zero Crossings 

Finding zero crossings is much easier than finding extrema

because it’s a local property!

Consider a 3x3 patch: Consider a 3x3 patch: 

assume

how can we tell if there was a zero crossing in the patch?



Step 4: Find the Laplacian Zero Crossings Step 4: Find the Laplacian Zero Crossings 

Finding zero crossings is much easier than finding extrema

because it’s a local property!

Consider a 3x3 patch: Consider a 3x3 patch: 

no zero crossing



Step 4: Find the Laplacian Zero Crossings Step 4: Find the Laplacian Zero Crossings 

Finding zero crossings is much easier than finding extrema

because it’s a local property!

Consider a 3x3 patch: Consider a 3x3 patch: 

zero crossing!



Step 4: Find the Laplacian Zero Crossings Step 4: Find the Laplacian Zero Crossings 

Finding zero crossings is much easier than finding extrema

because it’s a local property!

Consider a 3x3 patch: Consider a 3x3 patch: 

zero crossing!

If at least one pixel has a Laplacian of different sign 

than the Laplacian of the center pixel, then a zero 

crossing occurred! 



Step 4: Find the Laplacian Zero Crossings Step 4: Find the Laplacian Zero Crossings 

Finding zero crossings is much easier than finding extrema

because it’s a local property! 

Other examples.

If at least one pixel has a Laplacian of different sign 

than the Laplacian of the center pixel, then a zero 

crossing occurred! 



Step 4: Find the Laplacian Zero Crossings Step 4: Find the Laplacian Zero Crossings 

Not all zero crossings are created equal! 

The strength of the zero crossing can be defined as the 

difference between the        and the      values.



Step 4: Find the Laplacian Zero Crossings Step 4: Find the Laplacian Zero Crossings 

Zero-crossings whose strength is greater than a threshold.



Step 4: Find the Laplacian Zero Crossings Step 4: Find the Laplacian Zero Crossings 

Laplacian with zero-crossings overlaid



Topic 4.3:Topic 4.3:

Local analysis of 2D image Local analysis of 2D image 

patchespatchespatchespatches
• Images as surfaces in 3D

• Directional derivatives 

• Image Gradient 

• Edge detection & localization

• Gradient extrema

• Laplacian zero-crossings

•• Painterly renderingPainterly rendering

• Local geometry at image 

extrema

• The Image Hessian

• Eigenvectors & eigenvalues

• Corner & feature detection

• Lowe feature detector

• Harris/Forstner detector



Giving Photos a “Painted” LookGiving Photos a “Painted” Look

Case study: From P. Litwinowicz’s SIGGRAPH’97 paper

“Processing Images and Videos for an

Impressionist Effect”



Giving Photos a “Painted” LookGiving Photos a “Painted” Look

How would you do it?

Original photo



Step 1: Stroke ScanStep 1: Stroke Scan--ConversionConversion

Original photo Stroke photo

• Stroke:  A short line drawn over the photo 

• Strokes are drawn every k pixels

• Strokes drawn at a fixed angle (45 deg.) 

• Strokes take color of their origin pixel

• Stroke length is chosen at random



Step 1: Stroke ScanStep 1: Stroke Scan--ConversionConversion

Original photo Stroke photo

Cool, but jagged edges not cool



Step 2: Edge DetectionStep 2: Edge Detection

Original photo Edge image

∇I
v

Edge detection step: For every pixel in original photo

• Compute image gradient at the pixel 

• Compute gradient magnitude (in the range 0-255)

• If magnitude > threshold, label pixel as an “edge pixel”

• Compute gradient orientation

• Compute the vector v perpendicular to pixel’s gradient



Step 3: Stroke ClippingStep 3: Stroke Clipping

Original stroke Clipped stroke

Motivation: To avoid “spill-over” artifacts, strokes are clipped

at edges detected in the image (i.e., a stroke should not

cross an edge pixel)



Step 3: Stroke Clipping ResultsStep 3: Stroke Clipping Results

Clipped Stroke PhotoOriginal Stroke Photo

Cooler, but still not van Gogh!

Strokes are all oriented: boring



Step 4: Incorporating Edge OrientationStep 4: Incorporating Edge Orientation

Oriented Stroke PhotoClipped Stroke Photo

Toss the 45-degree angle strokes 

Draw strokes in the direction normal to the gradient!

Rather than blindly drawing strokes in 45-degree angles,
draw strokes so that they follow edge orientation

v.G. would be proud!


