

...continued **Details and More Results**

Video Analysis

Shot Boundaries Displaced Frame Difference (distance) between two motion compensated frames) used as feature after normalization and filtering.

> 1981 correct detections, 2 miss, 8 false positives.

Special Sequences Audio-visual template matching techniques can be used in general. For TBBT, we use the

More Results

Person Recognition – precision-recall curves, E1, E2, and E3

No face visible, characters correctly recognized...

dominant color descriptor to find artificial gradients. \geq 19 correct detections, 0 miss, 0 false positives.

Alternating Shots

Same people occur in alternate shots! This can be used as a constraint on recognition in our model or to perform cumulative track scoring. Detected using **Displaced Frame Difference on** the first frames of each shot. ➤ 4.5% Equal Error Rate

Title Song

Detected and removed from analysis using audio template matching with audio waveform envelope. \succ Up to ± 20 ms

Direct face result is wrong, clothing corrects

Audio Waveform Envelopes

Direct clothing result is wrong, face corrects

Time in second

Model Energy Functions

Minimize shot energy E(i) to obtain optimal identities μ which match evidence (clothing and face) and satisfy constraints.

Clothing & Face: $E_C(i,j) = -\langle \mu_{ij}, c_{ij} \rangle; \quad E_F(i,j) = -\langle \mu_{ij}, f_{ij} \rangle$ $E_{C/F}(i,j)$ is the clothing (face) energy term for shot *i*, track *j* and captures the similarity between the track evidence c_{ii} , f_{ii} with the optimization variable.

Regularization: $E_R(i,j) = \langle \mu_{ij}, \mu_{ij} \rangle$ $E_R(i,j)$ is a regularization term for μ_{ij} .

$$E_{FCR}(i) = \sum_{j} w_F E_F(i,j) + w_C E_C(i,j) + w_R E_R(i,j)$$

Presence: $\mathcal{P}^{(i)} = sigmoid(\sum_{j} \mu_{ij})$ Captures who is seen in the shot *i*.

Speaker Penalty:
$$E_S(i) = \langle (1 - \mathcal{P}^{(i)}), s_i \rangle$$

Uniqueness constraint (can be tricky!)

The uniqueness constraint just enforces the two people are different. However, it cannot tell who is the right person! We see an example in which a correct result is flipped due to higher confidence in the other.

Sheldon speaks "Coming..."

LEGEND

www.kit.edu

Impose a penalty if the speaker s_i is not among the people present in the shot $\mathcal{P}^{(i)}$.

Uniqueness Constraint: $E_U(i) = \sum_{(j,k) \in \mathcal{T}_i} \langle \mu'_{ij}, \mu'_{ik} \rangle$ Two simultaneously occurring tracks should have different identities. μ' allows 2 unknown people to co-exist. $E(i) = E_{FCR}(i) + w_{S}E_{S}(i) + w_{U}E_{U}(i)$ $\mu^* = \arg \min E(i)$

***Weights are seen to not have a large influence

Project page (tracks, ground truth, etc.) http://cvhci.anthropomatik.kit.edu/~mtapaswi/projects/personid.html

Acknowledgment: This work was supported by the Quaero Programme, funded by OSEO; and BMBF contract no. 01ISO9052E.

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

