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Figure 1. Comparing human gaze fixations (left) and model’s attention maps (right) for 3 different videos (one per row). The memorability
scores, ground-truth (GT) and model prediction (PR), are provided on the left. The heatmaps depict areas of high visual attention through
warmer colors (red-yellow), indicating regions where human observers fixated (left) and model attended (right). The model’s attention
patterns are aligned with human gaze patterns, especially for more memorable videos. Samples from Memento10k [33].

Abstract

Understanding what makes a video memorable has im-
portant applications in advertising and education technol-
ogy. Towards this goal, we investigate spatio-temporal at-
tention mechanisms underlying video memorability. Dif-
ferent from previous works that fuse multiple features, we
adopt a simple CNN+Transformer architecture that enables
analysis of spatio-temporal attention while matching state-
of-the-art (SoTA) performance on video memorability pre-
diction. We compare model attention against human gaze
fixations collected through a small-scale eye-tracking study
where humans perform the video memory task. We un-
cover the following insights: (i) Quantitative saliency met-
rics show that our model, trained only to predict a memo-
rability score, exhibits similar spatial attention patterns to
human gaze, especially for more memorable videos. (ii) The
model assigns greater importance to initial frames in a
video, mimicking human attention patterns. (iii) Panoptic
segmentation reveals that both (model and humans) assign
a greater share of attention to things and less attention to
stuff as compared to their occurrence probability.

1. Introduction

In 2018, Nike’s “Dream Crazy” commercial featur-
ing Colin Kaepernick captured nationwide attention in the
US'. This advertisement was especially memorable be-
cause it was aired in the aftermath of Kaepernick’s protests
against race-based police brutality. While the context made
this commercial memorable for US-based audiences, other
types of commercials tend to be memorable in general. For
example, a famous 2013 E-Trade Super Bowl commercial
features a baby seated behind a stack of cash talking about
investments and hidden fees®. This sort of ad is likely to
be memorable regardless of cultural context due to several
attention-grabbing features, notably, a baby talking in an
adult voice and delivering investment advice. This latter
type of memorability, thought to be consistent across indi-
viduals and cultures, has been extensively studied in both
cognitive science and computer vision using images [4,21]
and words [1,31]. In this work, we ask: what are the spatial,
temporal, and semantic patterns of attention that are associ-
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ated with video memorability? To answer this question, we
train a CNN+Transformer model to predict human memora-
bility of naturalistic videos, use self-attention scores to de-
termine where the model looks across space and time, and
collect human eye-tracking data to compare the model’s at-
tention against human fixations (Fig. 1).

Early work on image memorability reveals the impor-
tance of both object and scene categories in predicting
memorability [15,21]. Semantic categories are also predic-
tive of memorability across stimuli, including words [1,31]
and indeed, prior work shows that context guides eye move-
ments to task-relevant object locations [46]. Thus, we inves-
tigate what semantic categories in videos drive memorabil-
ity. Video captioning approaches have been used in previ-
ous semantic analyses of video memorability [13, 33, 39].
However, to our knowledge, we are the first to present a
detailed analysis of attention captured by different seman-
tic categories when humans attempt to memorize videos
and when a model is trained to predict these memorabil-
ity scores. We apply panoptic segmentation [ 1 1] and adopt
the COCO hierarchy [10] to distinguish between things
(i.e. objects with well-defined shapes such as person) and
stuff (i.e. amorphous background regions such as sky) in
the video frames. Next, we compare pixel distributions
weighted by model attention and human gaze and find that
both the model and humans generally enhance attention to
things and reduce attention to stuff. Furthermore, the model
and humans agree on what specific things and stuff to em-
phasize or disregard. Overall, these results indicate that the
model learns similar attentional strategies as humans even
though it is trained only to predict a memorability score.

Beyond semantics, the time axis in videos begs an im-
portant question: how early does the model know about
the memorability of a video? Human experiments using
extremely fast presentation times reveal that image mem-
orability differences can be observed in brain activity pat-
terns as early as 400 ms [4, 24]. Therefore, it is possible
that very early moments in a video are predictive of how
memorable it will be. Furthermore, human attention tends
to be highest at the beginning of an event and wanes over
the course of the event [27]. Thus, video memorability
scores may be influenced to a greater extent by the initial
frames. Note that memorability scores are computed as
a consensus across participants. Therefore, we expect the
video frames that most people attend to in similar ways to
drive the memorability scores. Despite having no intrinsic
temporal bias, can models trained to predict memorability
pick up on these human-like temporal attention patterns? To
answer this question, we first analyze human-human gaze
agreement in our videos and establish that different peo-
ple are more likely to attend to similar regions in the initial
frames. Next, summing over the model’s spatial attention
scores in a frame, we observe that the model indeed assigns

greater importance to earlier frames within videos, thereby
discovering a subtle temporal pattern in human behavior.

The video memorability literature [ 12, 16,20] focuses on
high prediction performance and lacks analysis of models’
(dis)similarities to how humans view and remember videos.
We address this gap through the following contributions:
(i) We adopt a simple CNN+Transformer model to pre-
dict video memorability as it facilitates a study of spatio-
temporal attention mechanisms. Even with a single encoder,
our model matches state-of-the-art performance. (ii) To
compare the model against what humans look at and when,
we collect eye-tracking data of subjects in a video mem-
orability experiment, similar to the original setup [12, 33].
(iii) Through panoptic segmentation and attention-weighted
analyses, we show that both the model and humans increase
and decrease attention similarly to different things and stuff.
(iv) We show that our model with no intrinsic temporal
bias learns to attend to the initial frames of the video with
a decreasing pattern over time, consistent with framewise
human-human gaze agreement patterns. We will release our
code and eye-tracking data to encourage further research.

Note, our work aims to highlight the similarities be-
tween human fixations when performing memorability ex-
periments, and model attention when trained to predict
memorability scores. A simple CNN+Transformer archi-
tecture enables this, matches SoTA, and has not been used
in video memorability before.

2. Related Work

Memorability in cognitive science. While human beings
remember a huge amount of visual information, not all vi-
sual experiences are equal in our memory [21]. Some im-
ages are consistently better remembered across people, sug-
gesting that memorability is observer-independent [3, 4].
This makes algorithms suitable for predicting memorabil-
ity [25]. Several factors such as scene semantics [21], ob-
ject category [15], and visual saliency [!5] correlate with
memorability, yet considerable statistical variance in mem-
orability scores remains unexplained [38]. Although image
memorability has been studied extensively in cognitive sci-
ence, videos have been used primarily in the study of event
segmentation and to understand the neural processes under-
lying learning and memory [5, 6]. Observer-independent
memorability of videos has received less attention in cogni-
tive science compared to the work in computer vision.

Memorability in computer vision. The study of vi-
sual memorability in computer vision started with a focus
on images [21,25]. Models such as MemNet were de-
veloped for image memorability prediction on large im-
age datasets [25]. Improvements over the initial models
involved incorporating attention mechanisms [17], image
captioning modules [41], object and scene semantics [35],
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Figure 2. Model overview. 7 video frames are passed through
an image backbone encoder to obtain spatio-temporal features
F ¢ RTXHXWxD  Coupled with position embeddings, and after
appending a CLS token, we pass them through a Transformer en-
coder with self-attention. A memorability score is calculated at the
CLS representation with an MLP. Attention scores between CLS
and each token are used for downstream anaylsis.

and aesthetic attributes [50]. The insights gained from these
studies also led to the development of Generative Adversar-
ial Networks (GAN) based models that can modify images
to manipulate their memorability [ 18,28, 40].

Video memorability has fewer works, typically evalu-
ated on VideoMem [12] and Memento10k [33]. The seman-
tic embeddings model of VideoMem [12] uses an image-
captioning pipeline in conjunction with a 2-layer MLP for
memorability prediction. SemanticMemNet [33] integrates
visual cues with semantic information and decay patterns
to predict memorability. Recent approaches involve multi-
ple tiered representation structures, M3S [16], or use Large
Language Models (LLMs) to generate textual descriptions
that are then used to predict memorability scores [20]. In
contrast, we adopt a simple CNN+Transformer attention-
based model that matches SoTA, but also facilitates compar-
ison between model attention and human gaze on semantic
and temporal aspects of video memorability.

3. Methods: Model and Human

We present two methods: (i) a CNN+Transformer model
that predicts memorability scores using spatio-temporal at-
tention; and (ii) an eye-tracking study to capture human
gaze patterns during a memorability experiment.

3.1. Transformer-based Model

We begin by defining some notation. Our dataset
consists of multiple videos with associated memorability
scores, (V,m) pairs. Each video consists of multiple frames.

We sub-sample T frames for memorability prediction and
denote a video as V = {f;} L.

Our model consists of three parts: (i) a backbone im-

age encoder @, (ii) a Transformer encoder that attends over
spatio-temporal tokens extracted from 7' video frames, and
(iii) a prediction head that estimates the memorability of a
video (see Fig. 2).
1. Image encoder. Our goal is to employ a model that al-
lows us to analyze the spatio-temporal attention over video
frames. Thus, we consider CNN backbones such as ResNet-
50 [19], trained with contrastive language-image pretrain-
ing (CLIP) [36]. We encode each video frame to obtain a
space-aware representation (from the conv5 layer):

f, = ®(f;), where f; e RF*W>P wic {1,.... T}, (1)

where H x W are height and width of the spatial resolution,
and D is the dimensionality of the embeddings.

While previous works use multiple features: frames,
flow, and video by [33]; low-, mid-, and high-level repre-
sentations and a contextual similarity module by [16]; or
a host of 10+ models fed to an LLM by [20], our model
relies on a single semantic backbone (CLIP). Our simple
approach enables the analysis of model’s spatio-temporal
attention maps through a comparison to human gaze.

2. Video encoder. We use a Transformer encoder [47] to
capture attention across spatio-temporal tokens. First, we
flatten and encode the image features using a linear layer
W, € RY*D to reduce dimensionality. Next, to each token,
we add two types of position embeddings:

£l =Waf; +E{ +E Vi {1,....T},je{l,....HW}, (2)

where E! is the i" row of the temporal embedding matrix
(Iearnable or Fourier), and E is the j™ row of the spatial
embedding matrix, and f;; € RP is the feature at frame i and
spatial region j.

We prepend a CLS token (with learnable parameters
hcis) to create a sequence of 1+-7THW tokens and post Lay-
erNorm [2] feed this to a Transformer encoder (TE) of L
layers with hidden dimension d:

lhcis.fir.. . Braw] = TE((hcis By, frpw]) . )

3. Predicting memorability. We pass the CLS token’s con-
textualized representation to an MLP and predict the mem-
orability score: /it = MLP(hcs).

Extracting attention scores. We extract the self-attention
matrix from the multi-head attention module of the last
layer of the TE. We mean pool over the heads and pick the
row corresponding to the CLS token. Ignoring the self to-
ken, this attention vector o« € RT#W Y o = 1, is used for
further spatio-temporal analysis. We obtain an attention
map of the size of the image by applying upscaling (pyra-
mid expand) on the H x W attention scores of each frame.



Training and inference. Similar to previous work [16,33]
we use the MSE loss .Z = ||m — || to train our model.
We also considered the Spearman loss [16], but did not see
significant performance gains. For most experiments, we
freeze the backbone and rely on the strong semantic features
extracted by CLIP pretraining.

3.2. Eyetracking Study: Capturing Gaze Patterns

We collect eye-tracking data while participants view
videos in a memory experiment. The setup (schematic in
supplement Fig. 9) follows the original video memorability
experiments [12,33], as we want the gaze patterns to accu-
rately reflect the cognitive and visual processes involved in
viewing and remembering videos. Further details regarding
the setup are provided in supplement Appendix A.1.

Data collection. Our study has 20 participants (9 females,
11 males, Age 22.15 +052 (mean +seEm)). Mementol10K:
6 females, 4 males, Age 22.9 +094. VideoMem: 3 fe-
males, 7 males, Age 21.4 +037. We choose 140 unique
videos each from both video datasets: MementolOK [33]
and Videomem [12]. We use the SR Research EyeLink 1000
Plus [42] to capture binocular gaze data, sampling pupil po-
sition at 5S00Hz. A 9-point target grid is used to calibrate
the position of the eye. Saccades and fixations are defined
using the algorithm supplied by SR Research.

We perform clustering to select videos spanning diverse
visual content and memorability attributes (see supplement
Appendix A.2 for details). Participants watch multiple
videos and are instructed to press the SPACEBAR upon iden-
tifying a repeated video. Each participant watched a total of
200 videos: 140 unique videos, 20 target repeats occurring
at an interval between 9—200, and 40 vigilance repeats in-
terspersed every 2 — 3 videos. All videos are displayed in
their original aspect ratios at the center of a white display
screen with resolution 1024 x 768 pixels.

Data processing. The fixation coordinates for both eyes are
obtained using the EyeLink Data Viewer software package
(SR Research Ltd., version 4.3.210). These coordinates are
then used to construct a binary matrix for each participant,
corresponding in size to the original video dimensions. To
account for the visual angle of approximately 1 degree, a
Gaussian blur is applied to these matrices (see supplement
Appendix A.3 for details). To create the human fixation
density maps, we average the matrices corresponding to the
same frame of the same video across participants. To en-
sure compatibility with model’s attention maps, the fixation
maps are resized to a resolution of 224 x 224 pixels.

4. Experiments

Video memorability datasets. We perform experiments
on two datasets: (i) VideoMem [12] consists of 10K, 7
second video clips, each associated with a memorability

score. (ii) Mementol0K [33], introduced as a dynamic
video memorability dataset, contains human annotations at
different viewing delays. This dataset consists of 10K clips,
but they are shorter in duration (3 seconds).

Data splits. VideoMem has 7000 videos in the training set
and 1000 in the validation set (MediaEval workshop [43]).
Past works report results on the validation set as the test la-
bels are not publicly available. Memento10k is split into
7000 videos for train and 1500 each for validation and test.
We provided our model’s outputs to the competition orga-
nizers and report results on the test set.

Memorability metrics. The memorability score associ-
ated with each video in the datasets captures the proportion
of people in the original experiments who correctly recog-
nized the video. We evaluate model’s predictions relative
to ground-truth (GT) memorability scores, using the Spear-
man rank correlation (RC 1). Following previous works, we
also report the mean squared error (MSE |) to measure the
gap between GT and predictions.

Implementation details. We break each video into 7' uni-
form segments and pick one frame at random from each seg-
ment during training - this acts as data augmentation [49].
For inference, we take the middle frame of the segment.
T=5 works well for Memento10k (1.66fps) and T=7 for
VideoMem (1fps). When not specified otherwise, we train
our model with the Adam optimizer [26], learning rate
107>, and a step scheduler (for VideoMem only) with step
size 10 epochs and multiplier 0.5.

4.1. Video Memorability Prediction

We begin with model ablation studies for Memento10k.
VideoMem has some challenges with respect to data leak-
age (Sec. 4.2) and results are presented in Appendix C.1.

Ablation of vision models. Tab. 1 rows 1-6 show the re-
sults of various hyperparameters of the vision model eval-
uated on the validation set. Row 1 (R1) achieves best per-
formance and is the for further exper-
iments. Using spatio-temporal (ST, R1) image embeddings
and not performing global average pooling (R2) shows a
small improvement in RC. Similarly, using Fourier embed-
dings (R1) is better than learnable ones (R3), perhaps due
to the small dataset size. Surprisingly, using spatial em-
beddings to identify the H xW tokens reduces performance
(R1 vs. R4 or RS), perhaps due to the pyramidal nature of
the CNN representations. Finally, using random sampling
during training (R1) instead of picking the middle frame of
the segment (R6) results in a small increase. In general, the
gap between all rows is small, indicating that results are not
impacted strongly by hyperparameter changes. However,
spatio-temporal (ST) CLIP embeddings are required to ob-
tain spatio-temporal model attention maps.

Use of captions. [33] introduced captions (descriptions) for



Embedding Memento10k (val)

CLIP Time Space Sampling Caption RCT MSE |
1 ST F - Random - 0.706  0.0061
2 T F - Random - 0.687  0.0062
3 ST L - Random - 0.696  0.0059
4 ST F 1D Random - 0.703  0.0057
5 ST F 2D Random - 0.701  0.0056
6 ST F - Middle - 0.703  0.0066
7 ST F - Random Orig. 0.745  0.0050
8§ ST F - Random Pred. 0.710 0.0056

Table 1. Model ablations. Column 1 (C1) compares the impact
of using spatio-temporal (ST) features versus temporal (T) fea-
tures with global average pooling. C2 and C3 specify the types
of temporal (L: learnable, F: Fourier) and spatial position embed-
dings used. C4 is the frame sampling method used during train-
ing. C5 indicates whether the video caption (Orig: original cap-
tion, Pred: predicted caption) is used in modeling. Row I (RI)
is chosen as the for further experiments and
represents the best vision-only model. R2-6 evaluate vision model
choices: features, position-encodings, and frame sampling meth-
ods. presents results with original captions (Orig.) as a part of
the model and R8 aims to predict the captions on the fly. The best
results in each section are in bold, with second-best in italics.

the short videos in Memento10k as a way to emphasize se-
mantic categories for predicting memorability. We modify
our model by extending the sequence length of our Trans-
former encoder to include additional description tokens. Vi-
sual and text tokens are differentiated through a type embed-
ding (additional details in the supplement, Appendix D).

In Tab. 1 (bottom) using the original captions (OC)
strongly benefits Mementol0k as Spearman RC goes up
from 0.706 (R1) to 0.745 (R7). However, when the visual
tokens predict both the memorability score and the caption
(similar to CLIPCap [32]) the memorability score shows
modest improvement (to 0.710, RS).

SoTA comparison. Comparison to state-of-the-art works
on Memento10k with different setups (val or test split,

/ captions) is presented in Tab. 2. Note, our goal
is to understand the attentional factors driving video mem-
orability through a model that provides spatio-temporal at-
tention. Nevertheless, our model with a single feature en-
coder (CLIP) achieves results comparable to SoTA (Me-
mentolOk: 0.706 val, 0.662 test). With captions, we ob-
tain 0.713 (test). To interpret model performance reported
as RC scores, we note that a model that performs well is ex-
pected to approach a human-human consistency RC of 0.73
for MementolOK [33].

Furthermore, our model is trained only on the Me-
mentol0k training set, while all baselines train on a com-
bination of image and video memorability datasets. For ex-
ample, pretraining on LaMem [41] and fine-tuning on Me-
mentol0k improves performance from 0.706 to 0.715. For

Memento10k
Test Val
Methods Caption RC MSE RC MSE
SemanticMemNet Eccv20  No  0.659 - - -
M3-S cvpPr23 No - - 0.670 0.0062
Ours (R1 Tab. 1) No 0.662 0.0065 0.706 0.0061
SemanticMemNet ECcv20  Yes  0.663 - - -
Sharingan arXis Yes - - 0.72 -
Ours (R7 Tab. 1) Yes 0.713 0.0050 0.745 0.0050
Table 2. Comparison against SoTA for video memorability.

Baselines considered are SemanticMemNet [33], M3-S [16], and
Sharingan [20]. Split-half human-human consistency RC for Me-
mentol0k is 0.73. See supplement Tab. 6 for VideoMem.

completeness, we present cross-domain transfer results of
pretraining and fine-tuning our model on image or video
memorability datasets and evaluation on all in the supple-
ment, Appendix B.

All further analyses and experiments are conducted us-
ing the vision-only model, without incorporating captions.

4.2. Why is VideoMem challenging?

The RC scores on VideoMem [12] are significantly lower
than on Memento10k, even with additional information like
captions providing no improvement. Detailed results can be
found in supplement Appendix C.1. In fact, most methods
achieve RC greater than the human-human RC at 0.481, in-
dicating that models have probably overfit to the dataset, es-
pecially as a held-out test set is not available. As evidence,
the code repository of a recent work, M3-S [16]° shows that
achieving a Spearman RC of 0.5158 is possible after using
highly specific random seeds and hyperparameters.

Similar videos across splits. We propose a nearest-
neighbors (NN) analysis of representations and observe that
improving results on VideoMem is challenging due to prob-
lems in split creation. We visualize the NN in the training
set for each validation video based on ﬁCLs, the represen-
tation before the MLP regressor. On VideoMem, from a
random sample of 30 validation videos, 14 clips have visu-
ally identical NN in the training set. In contrast, on Me-
mentol0k, we are only able to find 1 clip among 30.

Fig. 3 displays a few videos illustrating this problem. On
Memento10k (left), we see that NNs show semantic aware-
ness and matching (I food, II speaker, IV sports field). On
the other hand, on VideoMem, the NN are (probably) from
the same long video. See right: I surfer, II astronaut, III
news anchor, IV farmer. Given the identical visual stim-
uli, the model can do no better than predict the average
memorability score of the NNs on the training set (which
it does). E.g. in row II with the astronaut, PR=0.81 is equal
to the average memorability, but is away from GT=0.86. In

3https: //github.com/theodumont/modular-memorability
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Figure 3. Nearest neighbor (NN) analysis for videos from Memento10K (left) and VideoMem (right). We illustrate four validation set
videos and for each, four NN from the training set. We provide the GT memorability score (below), the predicted score on the val set
(above), and the average of 4 NN scores from the training set. In B (right), multiple video clips with high visual similarity between train
and validation sets are highlighted with a yellow background. Conversely, the green rows highlight clips that have similar content, but are
likely from different source videos. We discuss how data leakage and variance in GT scores may adversely affect evaluation in Sec. 4.2.

row IV farmer, PR=0.83 is close to the average 0.80, but
away from GT=0.73. While using multiple feature back-
bones may help, this is not a satisfactory solution to a fun-
damental issue of data leakage across splits. To address this,
we attempted to recreate the splits. However, as the origi-
nal source video ids are unavailable, it is not easy to detect
which video clips belong to the source video.

Implications for data collection. We encourage re-
searchers to analyze new datasets before they are released.
Information about the video source and split creation pro-
cess are crucial aspects for any dataset. Additionally, mem-
orability scores are a measure of consensus among viewers
and are therefore closely tied to the number of viewers per
video. While LaMem averages 80 scores per image, Me-
mentol0K has over 90 annotations per video, Videomem
averages 38 annotations per video, much smaller than the
others. This variance in GT scores is also observed in Fig. 3
(B-1I), videos of the same astronaut have GT scores varying
from 0.73 to 0.90, making learning difficult.

4.3. Comparing Model Attention and Human Gaze

Setup. To compare the human gaze fixation density maps
and model-generated attention maps, we first min-max nor-
malize them to [0,1]. Next, we compute multiple popu-
lar metrics * in saliency evaluation [9]: AUC-Judd [23],
Normalized Scanpath Saliency (NSS) [7], Linear Corre-
lation Coefficient (CC) [34], and Kullback-Leibler Diver-
gence (KLD) [37,44].

4We compute all metrics following the methods used by https:
//github.com/imatge-upc/saliency-2019-SalBCE/blob/master/
src/evaluation/metrics_functions.py

Memento10k VideoMem
Metrics M-H H-H H-H Shuff. M-H H-H H-H Shuff.
0.89 0.90 0.70 0.89 0.80 0.55
AUC T +0.007 +0.001 +0.002 +0.007 +0.002 +0.001
82.91 88.88
AUC-P 1 +1.65 B B +1.29 B B
NSS 1 1.95 3.07 0.84 2.00 3.12 0.23
+0.074 +0.024 +0.022 +0.068 +0.023 +0.012
cct 0.46 0.49 0.16 0.27 0.27 0.03
+0.014 +0.003 +0.003 +0.007 +0.018 +0.001
KLD | 148 2.17 4.61 2.65 4.02 6.49

+0.035 +0.023 +0.022 +0.020 +0.018 +0.013

Table 3. Comparing gaze fixation maps against model’s attention
map via different metrics, along with human-human split-half re-
liability scores over 10 iterations. T () indicates higher (lower)
is better. M-H: Model-human; H-H: Human-human; and H-H
Shuff.: Human-Human_shuffled (random performance).

We split participants into two random groups and for a
given video, compute agreement between the two groups
using the saliency metrics. These human-human (H-H)
agreement scores are averaged over 10 random split it-
erations and then across videos. H-H scores act as a
ceiling against which our model-human (M-H) agreement
scores are compared. To obtain chance-level performance,
we compute H-H agreement scores but now with shuffled
videos (H-H Shuff.).

Results. While Fig. 1 shows qualitative results of human
gaze and model attention, Tab. 3 indicates that there is a
high degree of M-H similarity across both datasets. We
observe that metrics (AUC-J, CC) often approach the H-H
scores, and importantly, significantly improve over random
chance (H-H Shuff.). In Fig. 5, we plot AUC-Judd and NSS
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Figure 4. Analysis of panoptic segmentation for the most common 40 classes (20 stuff, 20 things). Left shows normalized pixel counts
(blue), model attention-weighted counts (light blue), and human gaze-weighted counts (orange). Both, model and humans, show lower
affinity for stuff classes and higher for thing classes, indicating their importance in memorability. Right Pixel counts are accumulated
across stuff and thing classes, highlighting the above trend clearly. Best viewed on screen with zoom.
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Figure 5. Gaze vs. attention similarity metrics with AUC-Judd
scores on the Y-axis and Ground Truth on the X-Axis. (See sup-
plement Appendix C.3, Fig. 11 for other metrics and their trends.)
Left: Memento10k, Right: VideoMem. Error bars depict SEMs.

against GT memorability bins and observe that the similar-
ity between model attention and human gaze maps increases
with GT memorability scores in both datasets. This sug-
gests that highly memorable videos have clear regions of
focus for both humans and the model. Please refer to the
supplement Appendix C.3 for other metrics.

Furthermore, we replicate these results on image datasets
by using a model pretrained on LaMem [25] and fine-tuned
on FIGRIM [§8] (supplement Appendix C.4).

Center bias. Among metrics, we also considered the shuf-
fled AUC (sAUC) [48], but it tends to unjustly penalize
valid central predictions [22]. Therefore, we introduce a
metric to measure relative similarity, AUC-Percentile. For a
given video, we compare the true AUC-Judd between model
attention and human gaze against a distribution of AUC-
Judd values calculated by comparing model attention from
that video and human gaze from other randomly selected
videos. The percentile of the true AUC-Judd score within
the distribution of random AUC-Judd scores estimates the
probability that the true score is video-specific and is not
obtained by chance or due to center bias. For instance, a
model driven purely by center-bias (using a 2D Gaussian,
0=10% of the scene height [30]) yields an average AUC-
Percentile score of 76.17 +2.62 on Memento10K and 68.47
+2.82 for VideoMem. Results in Tab. 3 show that our model’s

AUC-P scores at 82.91 +1.65 and 88.88 +1.29 exceed these
center-bias-driven AUC-P scores.

Another approach to rule out the possibility that the
high M-H similarity is due to center bias involves a di-
rect comparison between the performance of the previously
explained Gaussian-based center bias model [30] and our
proposed gaze prediction model. We use the Gaussian to
simulate central fixation and calculate median AUC-J score
across frames per video. Compared to the Gaussian, our
model is better aligned with human fixations across videos
on both datasets, Memento10K (p = 0.003) and VideoMem
(p=5.80x 10712).

4.4. Panoptic Segmentation

We extract panoptic segmentation labels from Mask-
Former [1 1], a SOTA model for segmentation, on the T se-
lected video frames (see supplement Fig. 16 for examples).
We use the COCO-stuff hierarchy [10] to classify labels as
stuff or things. We create three sets of counts: (i) Pixel
Count sums the number of pixels attributed to each label
across frames and videos (normalized by the total number
of pixels in the frame). (ii) Model Attention weighted counts
multiply the attention map with segmentation masks of each
category, summing across frames and videos. (iii) Human
Gaze weighted counts are similar and multiply gaze fixation
densities with segmentation masks.

Stuff vs. things classes. We consider the most prevalent
stuff and things labels (20 each) across the 140 videos
of the eye-tracking dataset and observe that attention in-
creases/decreases relative to normalized pixel counts in
similar ways for models and humans (Fig. 4 left). Specifi-
cally, we observe a tendency for decreased attention to stuff
and increased attention to things, which is clear in the cu-
mulative distributions (Fig. 4 right).

Simple vs. complex videos. Panoptic segmentation also al-
lows us to answer a crucial question about the impact of
video complexity on model-human alignment. We split our
videos into simple and complex based on the number of
objects averaged over frames (median split). Comparing



model-human and human-human alignment in these videos,
we find no significant differences in most metrics (see sup-
plement Appendix C.3) suggesting that our results are not
influenced by the complexity of videos.

4.5. Temporal Attention

We first analyze whether humans look at similar regions
across frames of a video and find that they are more consis-
tent in the initial frames of the video as compared to later
frames, see Fig. 6 (blue). However, it is possible that this re-
sult is driven by center bias if most videos have salient cen-
tral regions at the start. To rule this out, we identify a subset
of videos that have off-center salient regions in the initial
frames.” Fig. 6 (green) shows us that there is stronger con-
sensus across participants for the off-centered videos, and
this too goes down as the video progresses.

Next, to ascertain whether our model displays similar
temporal patterns of attention, we compute attention scores
as a € RTAW and sum over the spatial dimensions to ob-
tain temporal attention, oy € RT. As visualized in Fig. 7
left, our model preferentially attends to the initial frames of
the video sequence, without any architectural bias towards
this. We further rule out two possibilities: (i) reversing the
frames (and preserving the same temporal position embed-
dings), we observe that the model still gives more attention
to early frames (now appearing at the end, Fig. 7 middle);
(ii) computing optical flow magnitude [45] per frame, av-
eraged across all pixels, we find that motion is strongest
around the middle (Fig. 7 right) and cannot be the reason
for increased attention to early frames.

Therefore, we conclude that our model, only trained to
predict memorability scores, has learned to attend to the vi-
sual information that most participants look at earlier on in
the videos.

5. Conclusion

We adopted a simple CNN+Transformer model that
not only matches SoTA in predicting video memorability
scores, but also enables exploring the underlying spatio-
temporal attention mechanisms. Furthermore, we collected
human gaze data to compare against model attention and
observed that the model and humans look at similar regions.
We also discovered novel semantic attention patterns rele-
vant for video memorability. On the temporal dimension,
the model exhibited strong preference for early frames of
the videos, mimicking temporal patterns in human atten-
tion. We also analyzed a widely used video memorability

SWe adopt DeepGaze [29] and compute saliency maps for T video
frames. Next, we compute a distance between the predicted saliency map
and a center bias, modeled as a Gaussian, and sort the videos in decreasing
distance. For this analysis, we consider 25™ percentile most off-centered
videos for Memento10k and VideoMem separately.
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Figure 6. Framewise split-half AUC-J and NSS scores for

Mementol0OK (left) and VideoMem (right). The x-axis shows
sub-sampled frames at 7=5 for Mementol0K and T7T=7 for
VideoMem. The blue line (H-H) indicates the framewise align-
ment between gaze patterns, averaged over all 140 videos. The
green line captures framewise alignment averaged over 35/140
videos that have most off-center saliency in the initial frames. The
orange line represents H-H shuffled, mean alignment when gaze
patterns are compared across random videos.
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Figure 7. Left: Distribution of temporal attention across video
frames in normal order, showing peak at the early frames. Middle:
Distribution of temporal attention across video frames in reversed
order as a control to rule out position bias. Right: Mean optical
flow magnitude across frames to rule out motion as a bias for the
stronger temporal attention at the beginning. The x-axis indicates
the number of sub-sampled frames; 7=5 for Memento10K (top)
and T=7 for VideoMem (bottom).

dataset, identifying several critical issues that researchers
must consider when constructing new datasets.

Limitations. The current datasets have 10k videos each. A
model trained on them may not generalize well to any video
from the internet, especially in specific domains where the
visual stimuli are typically similar across all clips, e.g. iden-
tifying memorable parts from a lecture video. Addition-
ally, the model processes extracted frames rather than full
videos, which may result in the loss of important details
for memorability and could affect comparison with human
data, where viewers see the entire video.
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