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ABSTRACT
The visual world naturally exhibits an imbalance in the number of
object or scene instances resulting in a long-tailed distribution. This
imbalance poses significant challenges for classification models
based on deep learning. Oversampling instances of the tail classes
attempts to solve this imbalance. However, the limited visual diver-
sity results in a network with poor representation ability. A simple
counter to this is decoupling the representation and classifier net-
works and using oversampling only to train the classifier.

In this paper, instead of repeatedly re-sampling the same im-
age (and thereby features), we explore a direction that attempts
to generate meaningful features by estimating the tail category’s
distribution. Inspired by ideas from recent work on few-shot learn-
ing [53], we create calibrated distributions to sample additional
features that are subsequently used to train the classifier. Through
several experiments on the CIFAR-100-LT (long-tail) dataset with
varying imbalance factors and on mini-ImageNet-LT (long-tail),
we show the efficacy of our approach and establish a new state-of-
the-art. We also present a qualitative analysis of generated features
using t-SNE visualizations and analyze the nearest neighbors used
to calibrate the tail class distributions. Our code is available at
https://github.com/rahulvigneswaran/TailCalibX.

CCS CONCEPTS
• Computing methodologies → Supervised learning by clas-
sification.
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1 INTRODUCTION
Modern machine learning is driven by large scale datasets, em-
ployed in both supervised [11, 33, 36] and self-supervised [31, 34,
37, 39] scenarios. However, creation of these labeled datasets is a
challenging and costly affair [1] and may also lead to unforeseen
biases [41]. Often, these datasets are created by querying images
through a search engine [33, 36], followed by post-processing and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICVGIP’21, December 2021, Jodhpur, India
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7596-2.
https://doi.org/10.1145/3490035.3490300

Class 1 
Class 2 
Class 3

Validation data
Generated data

Train distribution
Decision boundary

Before generation After generation

Figure 1: Long-tail distributions consist of few categories
with many samples (head of the long tail, in red) and many
categorieswith few to very-few samples (green, blue). Due to
the larger diversity of the head classes, decision boundaries
are often favourable for the head class, while being error-
prone for the tail classes. The goal of our work is to generate
meaningful additional features for the tail classes so that a
balanced training set is created for the classifier. To this end,
we estimate the distribution of the tail classes based on indi-
vidualized instances and sample additional features through
this calibrated tail distribution.

“cleaning” to ensure a balanced distribution that has an (approxi-
mately) equal number of instances for each category.

However, the world we live in is naturally long-tail, and like the
language modality, even visual data follows the Zipf’s law [44, 57].
This is easily illustrated through examples we encounter in our
daily lives: people living in a city are more likely to see multiple
instances and a large diversity of cars than elephants for trans-
portation, and tables and chairs than tree stumps as furniture. This
natural distribution of categories is reflected in the datasets that
are collected through community efforts, e.g. iNaturalist [44] that
features a large image collection of biodiversity; or annotations for
a collection of randomly sampled raw data – action labels from the
Atomic Visual Actions dataset [13]; or interaction and relationship
labels from movie datasets [46].

Modern deep learning methods perform well on balanced dis-
tributions and have even shown super-human performance for
some datasets and tasks in diverse domains including image clas-
sification [14] and language understanding [48]. This has led to a
steadily growing interest in adaptingmethods to workwell with few
training samples – few-shot learning [4, 10, 29, 49, 51] or naturally
occurring long-tail distributions [17, 20, 24, 40, 56]. Interestingly,
it is observed that popular techniques used in shallow learning
(e.g. SVMs) such as loss re-weighting or balanced sampling [19] do
not perform well when they are applied with deep neural networks,
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as they may hurt the representation learning [20, 56]. Instead, de-
coupling the feature learning (i.e. CNN backbone) from the classifier
(i.e. final linear layers) is found to be necessary and useful [20].

In this work, we are interested in answering the following ques-
tion. Can we learn to generate feature representations for the im-
poverished tail classes, instead of requiring re-weighting (e.g. [56])
or multi-network distillation (e.g. [17]) strategies? Inspired by the
recent success of distribution calibration on few-shot learning [53],
we estimate and calibrate the feature distribution of tail classes to
sample additional features that are in turn used to train a classifier
- we term this as TailCalibration (see Fig. 1). Note that our work
is different from [5, 9, 21] that attempt to reconstruct or generate
images for the tail class; or from [45, 54] that use convex combina-
tions of input samples or features and their labels. TailCalibration
is agnostic to the training approach of the backbone, and therefore,
adopting better classification setups (e.g. CosineCE [28]) or using
distillation (e.g. CBD [17]) can further improve overall performance.

Our contribution can be summarized as follows: We explore
feature generation as a means to address the challenges of long-tail
classification, and show that TailCalibration, an adapted version
of [53], is an effective strategy to generate meaningful additional
features (Sec. 3). We empirically validate our approach through
multiple ablation studies on the CIFAR-100-LT achieving the state-
of-the-art performance (Sec. 4). Our analysis also holds for a long-
tailed version of a similarly sized dataset called mini-ImageNet-
LT [47] that had been introduced for few-shot learning. We also
present a qualitative analysis of generated features using t-SNE
visualizations and analyze the category-level nearest neighbors
used to calibrate the tail class distributions.

2 RELATEDWORK
We discuss and contrast related work on long-tail classification
with our proposed approach. While imbalanced learning has had a
long history, we focus primarily on modern techniques applied to
deep learning. In general, we can group related works in 4 broad
categories: (i) modifications to the loss function or re-weighting of
samples; (ii) decoupling the learning process of the representation
and classifier; (iii) using distillation or multiple experts; and (iv)
perhaps closest to our work, ideas related to sample or feature
generation.

2.1 Re-weighting or Adapting the Loss
Function

Class re-weighting or balanced sampling are popular approaches to
deal with long-tail datasets especially in shallow architectures [19].
However, with deep learning, as the same loss function trains both
the representation network and the classifier, the above ideas are
not directly applicable.

The cross-entropy (CE) loss is modified to down-weight easier
examples while focusing on harder ones [24], or to include the
effective number of training samples via a re-weighting term [8].
As an alternative to CE, there has also been work on deriving a
class-specific margin parameter to be inversely proportional to
the fourth root of number of samples for a margin-based loss [3].
Long-tail classification and label corruption are also attempted
simultaneously through meta-learning networks for re-weighting

instances [35, 38]. Recently, a simple logit adjustment that can be
applied post-hoc to trained models [30] is proposed as a means to
unify many of the above approaches.

A few different perspectives applied to long-tail classification
include viewing it as a domain adaptation task (target shift) [16,
18], or as a causal framework where stochastic gradient descent’s
momentum term is treated as a confounder [40].

Our work does not belong to this category and can be thought
of as orthogonal to any of the techniques above.

2.2 Decoupling Representation and Classifier
One of the key challenges of deep learning on long-tail datasets
is exposed by [20, 56]. Both works demonstrate that (i) represen-
tation learning suffers when applying balancing or re-weighting
techniques on end-to-end training paradigms, and (ii) classifier per-
formance of tail classes is adversely impacted when using standard
instance sampling. As remedies, a two stage approach is suggested.
In the first stage, usual end-to-end training is performed using in-
stance sampling. In the second stage, the classifier is decoupled from
the network and is trained with balanced sampling [20]. While this
two-stage strategy improves the performance, [55] discovers that
this may lead to domain shift between the representation and the
classifier parts when seen from the perspective of transfer learning
and proposes MiSLAS - a batch normalization based trick to resolve
this. On similar lines, a dual network with shared backbone is pro-
posed by [56] with an adaptive trade-off parameter that balances
the two objectives.

Our work is related to the above - we also decouple the training
of the backbone from the classifier. The key difference is that instead
of balanced sampling, we attempt to generate meaningful features
for the tail classes that are subsequently used to train the classifier.

2.3 Distilling Information across Networks
An alternative approach to long-tail classification is using (multiple)
teachers to distill information into a student network. One idea
here involves learning separate classifiers for sets of categories such
that the segregated imbalance factor is reduced before combining
them [52]. Along those lines, RIDE [50] trains multiple experts with
shared earlier layers and routes the inference through a subset of
trained experts to improve tail class performance. These subset of
experts can be self-distilled from the a larger subset of experts for
further improvement. An alternative idea considers an ensemble of
teachers trained on instance sampling that are used to uphold the
quality of the representation network while training the student
on a balanced sampling schedule [17].

Our strategy is orthogonal to this approach and we show that
applying TailCalibration on the distilled model from [17] further
improves performance.

2.4 Instance or Feature Generation
The final set of approaches address the challenges of long-tail classi-
fication through generation or augmentation of samples or features.
Among sample generation, SMOTE [5] is an old but popular choice
that generates new instances through interpolation between sam-
ples of the same (often, the tail) class. Parallel to our work, SMOTE
has been extended to deep learning where an encoder-decoder
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framework is used to generate additional images, DeepSMOTE [9].
Similar to SMOTE,mixup is a general supervised learning paradigm
that allows models to learn from convex combinations of not only
input samples, but also their labels [54]. Specifically designed for vi-
sual long-tail classification, M2m translation transfers the diversity
of samples from the head class to the tail through gradient updates,
resulting in minor visual transformations that lead to significant
impact on classification scores [21]. Similar to M2m, [7] explicitly
models class-specific and class-generic features which are then
mixed together to transfer the sample diversity from the head class
to the tail.

While mixup is applied on the input space, manifold mixup is
applied on the semantic (feature) space [45] and is effective at
generating convex feature combinations. Specific data augmen-
tation strategies relevant for long-tail classification transfer the
implicit knowledge of features from the head classes that exhibit a
high variance, to the tail classes that lack intra-class diversity [25].
This is done by constructing a feature cloud around the existing
tail data points to match the head class variance. A recent work
MODALS [6] suggests multiple modality agnostic feature augmen-
tation strategies based on hard example interpolation, extrapolation,
and Gaussian noise around the samples.

Our work is related to these ideas, but differs in the actual method
for feature generation. By calibrating distributions we expect to
learn from the diversity of head classes and generate features for
tail classes to balance the inputs seen by the classifier.

3 METHOD
We present details of our proposed method, TailCalibration, that
generates additional features for the tail classes. We start by formu-
lating the long-tail classification task through some notation and a
discussion of multiple strategies to train the backbone network.

3.1 Problem Definition
We address 𝐾 class supervised classification on a training dataset
D = {(x𝑖 , 𝑐𝑖 )}𝑁𝑖=1 with 𝑁 samples. x𝑖 represents the 𝑖th image and
y𝑖 is the one-hot encoding of the category label 𝑐𝑖 ∈ {1, . . . , 𝐾}. For
simplicity, we denote the set of samples belonging to category 𝑘 by
D𝑘 , and denote its cardinality by 𝑁𝑘 = |D𝑘 |. A long-tail setup can
be defined by ordering the number of samples per category, i.e.𝑁1 ≥
𝑁2 ≥ . . . ≥ 𝑁𝐾 (without loss of generality), such that

∑
𝑘 𝑁𝑘 = 𝑁 .

The imbalance factor of the dataset is indicated as the ratio of
samples in the head to tail class, 𝑁1/𝑁𝐾 , where a higher imbalance
often translates to worse performance on the tail categories.

We train a network Φ consisting of two components: (i) a back-
bone or representation network (CNN for images) that translates
an image to a feature representation 𝑓 (x𝑖 ) = z𝑖 where z𝑖 ∈ R𝐷 ,
and (ii) a classifier W ∈ R𝐾×𝐷 that predicts the category specific
scores (logits) 𝑔(z𝑖 ) = s𝑖 . When not specified otherwise, we assume
s𝑖 = 𝑔(z𝑖 ) = Wz𝑖 . We ignore writing the bias term of the linear
layer for brevity.

3.2 Training the Backbone
Our approach on generating features is independent from the man-
ner in which the representation network is trained. Below, we
present three ways of obtaining a trained backbone network 𝑓 .

CE. We consider a batch-wise training approach with instance
sampling, where each sample x𝑖 has equal probability of being
considered as part of a mini-batch B. Specifically, the parameters
of the backbone 𝑓 and the classifier 𝑔 are trained end-to-end using
the cross-entropy (CE) loss:

𝐿𝐶𝐸 = −
∑
𝑖

y𝑖 log(p𝑖 ) , (1)

where p𝑖 is a vector of probabilities obtained by transforming the
logits s𝑖 through the softmax operation.

CosineCE. As an alternative to the standard dot-product classi-
fier, a cosine normalization based classifier is proposed to reduce
the variance of the output neuron [28]. The key difference lies in
the computation of the dot product – the feature vector z𝑖 and
each row (category 𝑘) of the classifier, w𝑘 , are ℓ2-normalized prior
to computing the dot product. The logit score for sample x𝑖 and
category 𝑘 is computed as follows:

𝑠CosCE
𝑖𝑘

= 𝛾
z⊤
𝑖
w𝑘

∥z𝑖 ∥2∥w𝑘 ∥2
where z𝑖 = 𝑓 (x𝑖 ), (2)

where 𝛾 ∈ R+ is a positive normalization constant that ensures that
𝑠CosCE
𝑖𝑘

∈ [−𝛾,𝛾]. We treat 𝛾 as a learnable parameter and use the
softplus operator to ensure that it remains positive. We recall that
the operator is defined as ∀𝑥 ∈ R, softplus(𝑥) = log(1 + 𝑒𝑥 ). The
loss function used to train the model remains unchanged from the
above Eq. (1).

This formulation has also been adopted by recent works on few-
shot learning [12] and long-tail classification [17]. In particular, the
cosine similarity based score computation embeds all samples close
to a single point on the hypersphere (i.e. a (𝐷−1)-sphere embedded
in R𝐷 ) indicated by the classifier vector. We believe that this makes
the distribution of features on the hypersphere closely resemble a
Gaussian distribution or a vonMises-Fisher distribution [2]. We will
show the benefits of using CosineCE through our ablation studies.

Class-balanced Distillation (CBD). Parallel to our work, Iscen et
al. [17] show the use of teacher-student distillation with the goal
of improving both the backbone representation and the classi-
fier. We briefly summarize their approach. First, a teacher net-
work Φ𝑇 : (𝑓𝑇 , 𝑔𝑇 ) is trained using standard instance sampling
and the CosineCE classifier described above. Then, a student net-
work Φ𝑆 : (𝑓𝑆 , 𝑔𝑆 ) is trained with balanced sampling along with
distillation, i.e. the intermediate feature representation 𝑓𝑆 (x𝑖 ) is
constrained to be similar to 𝑓𝑇 (x𝑖 ), while harnessing the benefits
of balanced sampling for the classifier 𝑔𝑆 . We decouple the back-
bone network trained through a combination of the classification
and distillation losses, and show that TailCalibration can use these
improvements to obtain additional performance gains.

3.3 TailCalibration
The primary objective of our work is to generate additional features
z∗ such that they can be used to balance the data that is used to train
the classifier. Distribution calibration (DC) was proposed recently
in the context of few-shot learning: samples are generated for the
few-shot classes by relying on statistics of the base classes [53].
We investigate the applicability of DC in the context of long-tail
classification, and present the generation process below.
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Figure 2: We visualize the process of feature generation. We first estimate the class statistics, and apply the Tukey transfor-
mation to convert the data into a distribution closer to a Gaussian. We find the nearest neighbor categories for each instance,
calibrate the tail class distribution, and sample from this to generate additional features. The process is repeated until all
categories have balanced number of features, which are used as training data for the classifier.

Our approach can be simplified into three steps, also illustrated in
Fig. 2. (i) We first estimate the distribution of each category based on
a Gaussian assumption; (ii) Categorical neighbors of each instance
in the tail classes are used to create a calibrated distribution; and
(iii) We sample several new features from these distributions to
balance the training data seen by a classifier.

All operations below are in the feature space. Given a trained
backbone (discussed in Sec. 3.2), we first precompute feature rep-
resentations for the entire dataset. These features of true samples
are denoted by F = {z𝑖 }𝑁𝑖=1. F𝑘 denotes features of images corre-
sponding to the subset D𝑘 , or belonging to the category 𝑘 .

Due to the inherent randomness in sampling from a distribution,
we can generate features multiple times and use them as a fresh
dataset from which the classifier can learn something new in each
epoch.

Class statistics. We start by computing the statistics for each
category, assuming that the feature distribution is Gaussian. Note
that this assumption may be particularly reasonable when using a
backbone trained with the CosineCE loss function.

𝜇𝑘 =
1
𝑁𝑘

∑
𝑖∈F𝑘

z𝑖 , and (3)

Σ𝑘 =
1

𝑁𝑘 − 1
∑
𝑖∈F𝑘

(z𝑖 − 𝜇𝑘 ) (z𝑖 − 𝜇𝑘 )𝑇 , (4)

where 𝜇𝑘 ∈ R𝐷 and Σ𝑘 ∈ R𝐷×𝐷 denote the mean and full covari-
ance of the Gaussian distribution for category 𝑘 .

Tukey’s Ladder of Powers transformation. Sometimes referred to
as the Bulging rule, this transformation helps change the shape
of a skewed distribution so that it becomes closer to a Normal
distribution [42]. In particular, it is applied to each dimension of

the feature as follows:

z̃𝑖 =

{
z𝜆
𝑖

if 𝜆 ≠ 0
log(z𝑖 ) otherwise .

(5)

where 𝜆 > 0 is a hyperparameter of our model and z𝜆
𝑖
raises each

element of z𝑖 to the power 𝜆. In fact, 𝜆 ≃ 1 is found to perform well
for most of our experiments.

Calibration and generation. For each class, we sample 𝑁1 − 𝑁𝑘
additional features, such that the resulting feature dataset is com-
pletely balanced and all classes have 𝑁1 instances. Sampling is
performed based on an instance specific calibrated distribution.
Specifically, each z𝑖𝑘 (𝑖th feature from category 𝑘) is responsible
for generating [𝑁1/𝑁𝑘 − 1]+ features where [𝑥]+ rounds 𝑥 to the
nearest integer greater than or equal to 𝑥 . As 𝑁1/𝑁𝑘 may be a
fraction, we randomly choose an appropriate number of z𝑖𝑘 so as
to obtain a total of 𝑁1 samples.

Next, we compute the distances between class means and the
selected feature. For each feature z𝑖 , we first compute the distance
between the instance and category means as

∀𝑘, 𝑑𝑖𝑘 = ∥z̃𝑖 − 𝜇𝑘 ∥2 . (6)

We identify the set of 𝑀 category indices that are neighbors N𝑖
with smallest distance 𝑑𝑖𝑘 . Note that the distance computation uses
the Tukey transformed feature z̃𝑖 .

The calibrated distribution is obtained as

𝜇z𝑖 =
1

𝑀 + 1
©«
∑
𝑘∈N𝑖

𝜇𝑘 + z̃𝑖
ª®¬ (7)

Σz𝑖 =
1
𝑀

©«
∑
𝑘∈N𝑖

Σ𝑘
ª®¬ + 𝛼 , (8)
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where 𝛼 is an optional constant hyper-parameter to increase the
spread of the calibrated distribution. We found that 𝛼 = 0 works
reasonably well for multiple experiments.

Sampling. We initialize a multi-variate Gaussian distribution1
for each instance z𝑖 , and generate new features with the same
associated class label as 𝑐𝑖 . We denote the generated features for
category 𝑘 as F ∗

𝑘
, and together, |F𝑘 ∪ F ∗

𝑘
| = 𝑁1. This combined

set of features is generated for all categories and used to train the
classifier 𝑔.

ℓ2-normalized calibration. For the CosineCE backbone, we ℓ2-
normalize the features z𝑖 before feeding them to the TailCalibration
pipeline, both for gathering statistics and Tukey transformation.

4 EXPERIMENTS
In this section, we start by presenting a brief overview of the dataset
and implementation details for our methods. We present some
ablation studies comparing different aspects of the model, and
finally perform a thorough comparison of our work against state-
of-the-art approaches. We also include some analysis to obtain a
better understanding of the feature generation process.

4.1 Datasets and Experimental Setup
We benchmark our proposed method across two datasets, CIFAR-
100-LT and mini-ImageNet-LT.

CIFAR-100-LT. CIFAR-100 is a balanced dataset containing 60K
images from 100 categories, with 50K in train and 10K in validation.
We use the synthetically created long-tail variants that have also
been used by previous works [3, 56]. There are three versions of
the CIFAR-100-LT dataset, with the imbalance factor (𝑁1/𝑁𝐾 ) of
{10, 50, 100}. An exponential decay is used for determining 𝑁𝑘 in
between. Note that a higher imbalance factor mimics a stronger
long-tail problem and is typically more challenging - we will see
this through the performance of baseline models.

As the synthetically created variants involve randomly selecting
images, all experiments are replicated with 3 seeds where different
sets of images are selected. The average performance over all seeds
is reported when not mentioned otherwise. As we will see in the
ablation studies, this random sub-sampling often leads to a high
variance, but we observe consistent improvements by using our
approach. For evaluation, we use the entire balanced validation set
of 10K images, 100 samples for each of the 100 categories.

mini-ImageNet-LT. mini-ImageNet was proposed by [47] for few-
shot learning evaluation, in an attempt to have a dataset like Ima-
geNet while requiring fewer resources. Similar to the statistics for
CIFAR-100-LT with an imbalance factor of 100, we construct a long-
tailed variant of mini-ImageNet that features all the 100 classes
and an imbalanced training set with 𝑁1 = 500 and 𝑁𝐾 = 5 images.
For evaluation, both the validation and test sets are balanced and
contain 10K images, 100 samples for each of the 100 categories.

We report performance as accuracy. Note that average per-sample
accuracy is equivalent to average per-class accuracy due to the bal-
anced evaluation sets in both datasets.
1using PyTorch’s MultivariateNormal distribution.

Table 1: Hyperparameters used in TailCalibration feature
generation across various imbalance ratios and datasets.

Hyperparameters
CIFAR-100-LT mini-

Imbalance Ratios -ImageNet-
100 50 10 -LT

𝜆 (Tukey value) 1.0 0.9 0.9 1.0
𝑀 (Number of categories) 3 2 2 2

𝛼 (Spread of generated features) 0.0 0.2 0.0 0.1

Table 2: Ablation study comparing the impact of ℓ2-
normalization of features prior to TailCalibration. Back-
bone: CosineCE, Feature generation: TailCalib.

Method Imbalance Ratios
100 50 10

without ℓ2-normalization 42.62 49.17 58.12
with ℓ2-normalization 43.03 49.18 58.60

4.2 Implementation details
Implementation details for CIFAR100-LT. We follow a similar

setup to [56]: the backbone is a ResNet-32 [15] trained by mini-
batch stochastic gradient descent (SGD) with a momentum of 0.9
and a batch size of 128. For a fair comparison, we tune the other pa-
rameters to match the baseline accuracy of the rest of the reported
works. The learning rate is decayed by a cosine scheduler [27] from
0.2 to 0.0 in 150 epochs, and a weight decay of 5 × 10−5 is used. We
train our models on a single NVIDIA 1080Ti GPU.

Implementation details for mini-ImageNet-LT. We follow a similar
setup to [20, 40]: the backbone is a ResNeXt-50 trained byminibatch
stochastic gradient descent (SGD) with a momentum of 0.9 for 111
epochs on a batch size of 512. Through hyperparameter tuning, we
found that weight decay of 5×10−4 with a constant learning rate of
0.01 provides a better performing baseline. We train all the models
on a NVIDIA Tesla P100 GPU.

For the TailCalibration feature generation, we use the hyper-
parameters as stated in Table 1. Subsequently, the classifier is re-
trained with a constant learning rate of 0.001 for CIFAR-100-LT and
0.01 for mini-ImageNet-LT. While the weight decay for retraining
the classifier remains the same as the backbone for CIFAR-100-LT,
we found that decreasing the weight decay from 5×10−4 to 5×10−5
improves performance for mini-ImageNet-LT.

4.3 Ablation studies on CIFAR-100-LT
We present a few ablation studies to compare various aspects of our
proposed method. Note that we do all the necessary ablations only
with CIFAR-100-LT and use the findings to guide our decisions on
mini-ImageNet-LT.

ℓ2-normalization. As indicated in the last paragraph of Sec. 3.3,
when using CosineCE, we observed that it is better to ℓ2-normalize
the feature vectors z𝑖 before and after the generation. We show
the impact of this normalization in Table 2. Imbalance factors 100
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Table 3: Ablation study comparing the impact of backbones:
CE vs. CosineCE vs. CBD. We also see that generating fea-
turesmultiple times can be beneficial for training: TailCalib
vs. TailCalibX.

Backbone Feature Imbalance Ratios
Generation 100 50 10

CE
- 39.89 44.88 57.00
TailCalib 42.28 46.37 56.81

CosineCE
- 41.44 45.72 58.58
TailCalib 43.03 49.18 58.60
TailCalibX 44.44 49.80 59.73

CBD [17]
- 44.83 49.19 60.85
TailCalib 46.22 50.87 60.78
TailCalibX 46.59 50.90 61.13

and 10 see a small but consistent improvement across all three
seeds, pointing to the relevance of this modification: +0.21%, +0.64%,
and +0.38% for imbalance 100 and +0.77%, +0.4%, and +0.29% for
imbalance 10. For imbalance 50, we see a small improvement for
2 of 3 seeds: +0.12%, +0.09%, and -0.19%, resulting in an overall
negligible performance difference.

Backbones. We presented three main strategies to train our back-
bone in Sec. 3.2. Table 3 reports performance when applying Tail-
Calibration (abbreviated as TailCalib) for features precomputed
from various backbones (averaged across 3 seeds). Firstly, note
that CosineCE outperforms CE, while CBD with teacher-student
distillation outperforms both. TailCalibration shows a consistent
improvement over backbones, especially for the higher imbalance
factors of 50 and 100.

Training with multiple rounds of generation. As the feature gen-
eration process is quite fast, we can afford to generate samples
on-the-fly for each epoch during the training of the classifier. In
particular, we propose TailCalibX, denoting that TailCalib is em-
ployed multiple times. Specifically, we generate a set of features
once every epoch and use them to train the classifier. We show the
results for this experiment in Table 3. TailCalibX provides incre-
mental performance boosts over TailCalib.

Trends across different seeds. The variation across seeds is typ-
ically high as changing the seed not only changes the random
initialization of the base network (this has a small impact), but also
leads to the selection of a different subset of CIFAR-100 images for
creating the synthetically imbalanced training data (this has a large
impact). This is especially true for imbalance factor 50 and 10; we
suspect that as there are very few training samples in the tail cate-
gories for imbalance factor 100, which samples are selected does
not matter as much. For example, the accuracy of the CE baseline
across 3 seeds is (43.8%, 44.8%, 46.1%) for imbalance factor 50.

Fig. 3 shows the absolute percentage points performance im-
provement over the specific backbone for each seed. We observe
consistent performance improvement over progressively harder
backbones by applying TailCalib or TailCalibX across various seeds.

Table 4: Comparison of our approach (TailCalib, TailCalibX)
against previous works on CIFAR-100-LT. Methods with a *
indicate results produced by our re-implementations, please
see the text for details about the implementation. Best re-
sults are highlighted in bold, next best and notable results
with underline.

Type Method Imbalance Ratios
100 50 10

Baseline *CE 39.89 44.88 57.00
*CosineCE 41.44 45.72 58.58
Focal Loss [24] 38.41 44.32 55.78
Class-Balanced Focal [8] 39.60 45.32 57.99
L2RW [35] 38.90 46.83 52.12

Loss or Meta-Weight Net [38] 41.61 45.66 58.91
Re-weighting Domain Adaptation [18] 39.31 48.53 59.58

LDAM-DRW [3] 42.04 - 58.71
Logit adjustment [30] 43.89 - -
GBM [40] 44.1 50.3 59.6

Decouple *cRT [20] 42.63 47.26 57.61
BBN [56] 42.56 47.02 59.12

Distillation LFME [52] 42.3 - -
*CBD [17] 44.83 49.19 60.85

Generation

M2M [21] 42.9 - 58.2
mixup [54] 39.54 44.99 58.02
Manifold mixup [45] 38.25 43.09 56.55
*MODALS [6] 42.813 47.57 58.53

*Ours
CosineCE + TailCalib 43.03 49.18 58.60
CosineCE + TailCalibX 44.44 49.80 59.73
CBD + TailCalibX 46.59 50.90 61.13

We can also see that while TailCalib may fail to provide per-
formance improvements for low imbalance factors (CosineCE and
CBD, imbalance 10), TailCalibX always provides a small boost. This
indicates that the feature generation process may not be very re-
liable for datasets with a small long-tail effect, but the classifier
can still extract meaningful information from multiple rounds of
generation.

4.4 Comparison to state-of-the-art
We compare our proposed approach against several previous works
grouping them in a manner similar to our related work in Sec. 2.

Results for most methods are taken from the respective papers
or BBN [56]. For the methods that did not report results on CIFAR-
100-LT or mini-ImageNet-LT, we present additional details of our
re-implementation.
• For CE and CosineCE, we choose hyperparameters (learning
rate scheduler, number of epochs, etc.) to match the performance
of CE on a previously reported work, BBN [56].

• cRT [20] does not provide results on the CIFAR-100-LT and mini-
ImageNet-LT datasets. We use their publicly available code to
generate results for both the datasets.
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Figure 3: Performance improvement in absolute percentage points across TailCalib and TailCalibX for all three backbones:
CE (left), CosineCE (middle), CBD (right). On the x-axis, we indicate the seed and imbalance factor of each run. Please refer to
Table 3 for averaged performance scores across the 3 seeds.

Table 5: Comparison of our approach (TailCalib, TailCalibX)
against previous works on mini-ImageNet-LT. Since we in-
troduce usingmini-ImageNet in a long-tail variant, allmeth-
ods are our re-implementations. Best results are highlighted
in bold, next best and notable results with underline.

Type Method Many Mid Few All

Baseline CE 57.77 29.42 8.06 32.94
CosineCE 65.45 29.37 8.6 35.77

Decouple cRT [20] 66.00 31.99 29.3 43.09
Distillation CBD [17] 67.34 35.00 23.06 42.74

Generation MODALS [6] 66.62 28.65 11.06 36.67
mixup [54] 64.71 27.51 8.1 34.72

Ours CosineCE + TailCalib 68.05 32.59 25.13 42.77
CosineCE + TailCalibX 68.3 34.3 29.4 44.73

• CBD is a recent, and to the best of our knowledge, unpublished
work [17]. Through email conversations with the authors, we
verified our implementation and present results with a single
teacher trained on the both datasets.

• MODALS [6] was trained with the Gaussian noise augmen-
tation. We choose 𝜆 = 0.01 after performing a sweep across
[0.1, 0.01, 0.001].

• For mixup [54], we choose 𝛼 = 0.01 after performing a sweep
across [0.01, 0.1, 0.2, 0.3, 0.5, 0.7].

CIFAR-100-LT (Table 4). Firstly, note that the CosineCE training
paradigm is superior to CE, and in fact, outperforms several loss re-
weighting based methods. CosineCE + TailCalibX outperforms all
previousworks ignoring distillation. In fact, it achieves performance
close to CBD [17] (especially on imbalance factors 100 and 50) that
trains two networks - a teacher and student, and benefits from the
advantages of ensembling. Finally, applying TailCalibX on top of a
trained CBD model results in further performance improvements
of 1-2% notably for imbalance factors 100 and 50.

mini-ImageNet-LT (Table 5). TailCalibX outperforms all previous
works. As compared to the CosineCE baseline, not only does it
improve the accuracy for tail classes (few) by over 20%, we also

see performance improvements for both the middle classes (mid,
+4.93%) and head classes (many, +2.85%) as well. Surprisingly, CBD
performs worse than classifier re-training (cRT), hence, we omit
evaluation of TailCalibration as applied to a backbone trained with
CBD.

4.5 Analysis
tSNE visualization. Fig. 4 shows a few feature embeddings com-

puted using t-SNE [43] for head and tail categories from the CIFAR-
100-LT dataset. For visual clarity, we show 10 validation samples for
each class and up to 40 training + generated samples. We randomly
choose 3 pairs of visually similar categories: tank and bus, woman
and baby, and aquarium fish and turtle, such that one of them is
from the bottom 15 tail categories, while the second belongs to the
top 15 head categories.

In the left plot, before feature generation, we see that the valida-
tion samples (+) from the tail categories are often confused with
visually similar and larger head classes: (i) five samples of the tank
(red) are located close to the bus (blue) cluster; and (ii) roughly 7
of 10 samples of the woman category (purple) are potentially con-
fused as belonging to the baby class (orange). In the right plot, we
generate features using TailCalibration and re-compute the t-SNE
embeddings. We observe a noticeable reduction in errors, even on
this randomly picked toy sample. Now, 3 of 5 tank samples are close
to the bus cluster, and 4 of 7 woman samples are close to the baby
cluster, while the others are more easily separable.

Class nearest neighbors. Recall, to generate the calibrated tail
distributions, we pick𝑀 categories as nearest neighbors for each
feature z𝑖𝑘 . We analyze the classes that are most commonly used
as nearest neighbors for the bottom 15 tail classes of the CIFAR-
100-LT dataset in Table 6. The table shows the nearest neighbors
for imbalance factor 100 and𝑀 = 3. We observe that the class for
which we wish to generate samples is often the nearest centroid
and is ignored in the table for brevity.

This split of CIFAR-100-LT is sorted alphabetically, i.e. the classes
with letter a belong to the head, and classes with letters towards
the end of the alphabet form the tail. We see that nearest neighbors
need not belong to the head classes, even though it may be common.
For example, we see that tiger distribution draws from the lion class,
or television from couch, possibly due to the fact that images with a
television have additional furniture in them.
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Bus : Train
Baby : Train
Aquarium Fish : Train
Tank : Train
Woman : Train
Turtle : Train
Bus : Validation
Baby : Validation
Aquarium Fish : Validation
Tank : Validation
Woman : Validation
Turtle : Validation
Bus : Generated
Baby : Generated
Aquarium Fish : Generated
Tank : Generated
Woman : Generated
Turtle : Generated

Figure 4: t-SNE visualization of a few head and tail classes from CIFAR-100-LT. The plot on the left is before generation, and
the plot on the right is after generation. We show 10 validation samples for each class and limit to 40 training + generated
samples for ease of interpretation. Markers: · (dot) indicate training samples; + (plus) are validation samples; and × (cross) are
generated features also shown with a lighter version of the base color (e.g. black-gray for turtle). Head categories: bus (273),
baby (455), aquarium fish (477). Tail categories: tank (9), woman (5), turtle (6). Class size is indicated in parenthesis. Please
refer to the text, Sec. 4.5 for a more thorough discussion. Best seen in colour.

Table 6: Two most frequently chosen nearest neighbor cate-
gories to calibrate the distributions for generating features
for 20 tail categories of CIFAR-100-LT dataset.

Tail category # Train samples Nearest neighbors
tank 9 tractor, pickup_truck
telephone 9 streetcar, keyboard
television 8 couch, lamp
tiger 8 leopard, lion
tractor 7 lawn_mower, train
train 7 tractor, road
trout 7 dinosaur, caterpillar
tulip 6 rabbit, cattle
turtle 6 telephone, ray
wardrobe 6 television, skyscraper
whale 6 otter, seal
willow_tree 5 rabbit, oak_tree
wolf 5 rabbit, possum
woman 5 man, girl
worm 5 ray, woman

5 CONCLUSION AND FUTUREWORK
Learning to cope with long-tail distributions is an important prob-
lem for machine learning. Inspired by a recent work on few-shot
learning [53], we explored one facet of this challenging task: fea-
ture generation as a means to balance the training data seen by a
classifier. We analyzed the efficacy of distribution calibration and
empirically validated that it can lead to substantial performance
improvements. In this process, we achieved a new state-of-the-art
on two synthetic datasets: CIFAR-100-LT and mini-ImageNet-LT,
especially demonstrating that TailCalibration is orthogonal to, and

can be combined with, other works such as CBD [17], to yield
additional improvements.

Future work. In the future, we wish to analyze the feature gener-
ation process in a more thorough manner. In particular, we hope
to discover the underlying class-specific manifolds on which the
features would be expected to lie. While our initial attempts at
evaluating TailCalibration on ImageNet did not yield significant
improvement, we would like to extend our evaluation to other
long-tail datasets, both synthetic: ImageNet-LT [26] and Places-
LT [26], and natural: iNaturalist [44] or FineFoods dataset [32].
Another possibility is to exploit the hierarchy of categories and
learn appropriate models such as hyperbolic representations [22] or
their generalization to pseudo-Riemannian manifolds of constant
nonzero curvature [23].
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