Predict Responsibly: Increasing Fairness by Learning to Defer

David Madras, Toniann Pitassi, Richard Zemel

University of Toronto, Vector Institute

December 8, 2017

"0.6"

What does the prediction "0.6" mean? What qualities should it have?

What We Want From Black Box Predictions

What We Want From Black Box Predictions

What We Want From Black Box Predictions

e Fairness

David Madras, Toniann Pitassi, Richard Zem

- Accuracy
- Pairness
- Sesponsibility Ability to say "I Don't Know"

- Judge is external decision maker (DM) may have more knowledge
- Can seek out extra information on difficult cases
- Can assess qualitative or difficult-to-codify features
- Can access privacy-sensitive information

- "Positive", "Negative", and "IDK"
- Learn two thresholds: t_0, t_1
- At test time, punt to DM if $t_0 < x_i < t_1$; else, output prediction

Results - Punting

• Trained our model (2-layer NN) with fair regularization

$$\mathcal{L}_{\textit{fair}} = \textit{Accuracy} + \alpha \cdot \textit{Fairness}$$

- Simulated external DM by training separate (unfair) model
- This DM received some extra attributes in training, simulating a possible real-life imbalance between DM and model

- What if judge has access to extra info on some defendants?
 - Detailed written analysis, classified info, further inquiry
- What if judge is biased towards some types of defendants?
 - Unfairness may be concentrated on a few examples
- By using info about the DM during learning, we could punt more intelligently
- This is learning to defer

- Modify our model to take DM scores Y_{DM} on training set
- Use IDK output as a mixing parameter π_i
- Can describe system output Y_{sys} as function of s ~ Bernoulli(π_i), Y_{DM}, and Y_{model}

$$egin{aligned} &Y_{sys} = s \cdot Y_{DM} + (1-s) \cdot Y_{model} \ &s \in \{0,1\}; \ Y_{sys}, Y_{DM}, \ Y_{model} \in [0,1] \end{aligned}$$

Learning to Defer

- Suppose we are optimizing some loss function L(Y, Y_{sys}) over ground truth labels Y and system output Y_{sys}
- We can then define a new loss function \mathcal{L}_{Defer}

$$egin{aligned} \mathcal{L}_{Defer}(Y,Y_{sys}) &= \mathbb{E}_{s}\mathcal{L}(Y,Y_{sys}) \ &= \mathbb{E}_{s}\mathcal{L}(Y,s\cdot Y_{DM} + (1-s)\cdot Y_{model}) \end{aligned}$$

 \bullet Penalty for IDK \approx DM loss on that example

Results (Learning to Defer) - COMPAS

Results (Learning to Defer) - Heritage Health

David Madras, Toniann Pitassi, Richard Zem

- We argue that it is important to consider IDK models as part of a larger pipeline
- We demonstrate that learning to defer can provide benefits above and beyond learning to punt
- Deferring intelligently can improve the entire pipeline in both accuracy and fairness

Thank you!