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About Me

* I'm a PhD studentin Machine Learning at the University of Toronto
* Also affiliated with the Vector Institute

e At the moment, I'm mostly thinking about how to build ethical and fair
machine learning models/algorithms
* I'm also interested in causal inference, generative modelling, and
deep learning



This Talk

* In this talk, I'll be discussing fairness in machine learning

* |'ll give examples of unfairness in machine learning, discuss some ways
people have tried to define fairness mathematically, and talk about some
approaches for learning a system fairly



Machine Learning

* Machine Learning: machine learns patterns from data for
itself

* No rules explicitly given

* Extremely successful recently*®

1. Bigdata
2. Fast computers

Al

Machine Learning

*In some domains



Ethical Machine Learning?

* Machine learning can have high impact
* Used for high-stakes decisions
* Small, ubiquitous interactions




Ad related to latanya sweeney @

Latanya Sweeney Truth
www.instantcheckmate.com/
Looking for Latanya Sweeney? Check Latanya Sweeney's Arrests.

Ads by Google

Latanya Sweeney. Arrested?

1) Enter Name and State. 2) Access Full Background
Checks Instantly.

www.instantcheckmate.com/

Latanya Sweeney
Public Records Found For: Latanya Sweeney. View Now.
www.publicrecords.comy

La Tanya DY IANRED BERNARD, PARKER

Search for La Tanya Look Up Fast Results now! it
www.ask.com/La+Tanya

LOW RISK 3 HIGH RISK

Fugett was rated low risk after being arrested with cocaine and

Ethical machine learning matters |
in high-stakes domains

YOUR AD
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Fairness in Machine Learning — Two ldeas

* Group fairness

* Don’t discriminate unnecessarily between protected
groups (race, gender, sexuality, religion, etc.)

* Individual fairness
* Treat similar individuals similarly



Example: Online search engine results
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“Discrimination in Online Ad Delivery”, Sweeney [2@13] VL David Madras



Example: Online search engine results

* Sweeney found that “criminal record” ads were more likely to show
for names commonly given to black children than white ones

* Why did this happen?
* Who is responsible?
* How to regulate?



DEFINITIONS OF FAIRNESS:
CLASSIFICATION
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Example: Recidivism Prediction

Bail decision
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Example: Recidivism prediction

* Bail assignment task: Given some arrested defendant, predict if they
will recidivate

* High-stakes task
* No bail: can lose job, hurts family, more likely to plead guilty

* Machine learning tools have been developed to assist judges
* These tools can be more accurate than judges!



ProPublica Investigation (COMPAS)

* ProPublica studied COMPAS
predictions for 7000+
defendantsin Florida (2013-4)

* Different types of errors made
on black and white defendants

* Black: more often wrongly - 4
denied bail | FUOETT R
: LOW RISK HIGH RISK
* White: more often wrongly 3 10
give n b d | I Fugett was rated low risk after being arrested with cocaine and

marijuana. He was arrested three times on drug charges after that.
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Fairness is Impossible (sort of)

* ProPublica claimed COMPAS violated a specific fairness definition

* Northpointe responded: COMPAS satisfied a different fairness
definition

* It turns out that these were incompatible definitions



Many Definitions of Fairness

* For a label Y, a prediction p, and a sensitive attribute A

Fairness Metric Name This variable ... Isindependent of A
given...

Demographic Parity
Equalized Odds

I
=

P
P
Equal Opportunity p
Fair Calibration Y

Y

Fair Subgroup Accuracy =p

... and so on

Further info: “21 fairness definitions and their politics”, Arvind Narayanan

https://speak-statistics-to-power.gjthub, W fairness/.



How to Learn “Fairly”

* Naive Idea: remove A from your dataset
* This failsif Ais encodedin your other features!

 E.g. Aisrace, but dataset also contains postal code
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How to Learn “Fairly”

e Usually, some kind of constrained optimization or regularization
* There is a fairness-accuracy tradeoff

0 0 20 30 40 50 60 70 80 90 100 0 10 20 30 40 &0 60 70 8 90 100

loan threshold: 59 loan threshold: 53

denied loan / would default granted loan / defaults denied loan / would default granted loan / defaults
denied loan / would pay back -. granted loan / pays back denied loan / would pay back .. granted loan / pays back

“Attacking discrimination with smarter machine learning” — Wattenberg et al

2ss in ML, David.Ma

https://research.google.com/bigpicture/attacking-discrimination-in-mil/



What if you don’t like tradeofts?

* [n some applications, tradeoffs with accuracy are highly undesirable

* Instead:

* Collect more data on disadvantaged group
* Collect more attributes

 Model groups separately
« 777

“Why Is My Classifier Discriminatory?”, Chen at al. [2018]

“Decoupled classifiers for fair and efficient machine learning”, Dwork et al. [2017]



The One True Fairness Definition

* Probably doesn’t exist



FAIRNESS IN
REPRESENTATIONS
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“Fairness Through Awareness”, Dwork et al. [20T2]¢ "V bavid Madras



Gender Bias in Word Embeddings

* Experiment: translate English sentence to gender-neutral language
and back, using Google Translate

(try live demo)



Gender Bias in Word Embeddings

* Experiment: translate English sentence to gender-neutral language
and back, using Google Translate

“She is a doctor” “O bir doktor” “He is a doctor”

“He is a nurse” “O bir hemsire” “She is a nurse”

* Try it yourself!
 The Al only knows probabilities: given is a doctor”,
“He” occurs more commonly than “She” in the training data

o




Example: Word Embeddings

(if time permits)

* For computers to understand words, we need to turn them into
numbers first

* Using a neural network, we can learn word embeddings — numbers
that represent words
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Example: Word Embeddings

* We can now use these embeddings in other language applications

* Using analogies (embedding arithmetic), we can check that they
make sense
King

Man

Queen

Woman

King — Man = Queen - Woman



Gender Bias in Word Embeddings

* However, we find some of these analogies contain gender bias

* Remember: the computer learns all of this on its own, given just a
large body of text

Computer Programmer

Man

Housewife

Woman

Programmer — Man = Housewlfe - Woman



Example: Online advertising
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Example: Online advertising Advertiser
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Example: Online advertising

* Online advertisers show everyone different ads
* They use data provided by data owners on the users

e Using machine learning, they identify which users are most likely to
click on each ad

* This can lead to unfairness:
* Men more likely to see ads for high-payingjobs
* Black people more likely to see ads for bad lines of credit



Fair and Transferable Representations

* In our work, we focus on the data owner’s role in fairness
 What if the data owner can alter the data?

* Maybe there’s a way to change the data so that:
* The advertiser can still make good predictions on many tasks
* The advertiser is guaranteed to make fair predictions



Our work:
Transferab

_earning Adversaria

e Representations

ly Fair and

AFTR)

* We use three neural networks, each simulating a role:
1. The data owner: wants to make the data fair
2. Anindifferentadvertiser: doesn’t care about fairness, only business
3. A malicious advertiser: only wants to be unfair

[ EncoderI Decoder](
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LAFTR Results

 Slight loss in accuracy, big gain in fairness
e Generalizes to unseen tasks
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“Learning Adversarially Fair and Transferrable Represeitations™ Viadras, Creager, Pitassi, Zemel [2018]



Fairness in Machine Learning — What's next?

* Working with external decision-makers
* In many real applications, machine learning model interacts with an external
decision maker
* Must learn to defer on some cases

Data IDK Model Output
X1 0 1 | 0
X2 IDK 0 0
X3 ‘:> 1 1 1
X4 IDK (- > 0 > 0

”Predict Responsibly: Increasing Fairness and Aceuracyby Learning o Defer”, Madras, Pitassi, Zemel, 2017



Fairness in Machine Learning — What's next?

* Fairness when learning from biased data
* Whatif the mechanism which produced your datasetis biased?
* “Residual Unfairnessin Fair Machine Learningfrom Prejudiced Data”, Kallus, Zhou [2018]

* Fairness underrepeated decision-making
* If biased decisions are maderepeatedlyinthe same environment, feedback loops can occur
* In predictive policing:
 “Runaway Feedback Loopsin Predictive Policing”, Ensign et al. [2017]
* Inrecommender systems:
* “Fairness Without Demographicsin Repeated Loss Minimization”, Hashimoto et al. [2018]



In Summary

* Fairness in classification, representation
* Advertising, search, criminal justice, finance, language processing

* Many useful definitions, none are perfect
e Can also think about fairness as a system problem
* Other important topics: transparency, accountability, safety



Thank you!

Collaborators:

Elliot Creager Toni Pitassi Rich Zemel
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