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Introduction: Captioning and Retrieval

» Image captioning: the challenge of generating descriptive
sentences for images

» Must consider spatial relationships between objects
» Also should generate grammatical, sensible phrases

» Image retrieval is related: given a query sentence, find the
most relevant pictures in a database

Figure 1. Caption Example: A cat jumping off a bookshelf



Approaches to Captioning

1. Template based methods
» Begin with several pre-determined sentence templates
> Fill these in with object detection, analyzing spatial
relationships
» Less generalizable, captions don't feel very fluid, "human’
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2. Composition-based methods
» Extract and re-compose components of relevant, existing
captions
» Try to find the most "expressive” components
» e.g. TREETALK [Kuznetsova et al., 2014] - uses tree
fragments
3. Neural Network Methods

» Sample from a conditional neural language model
» Generate description sentence by conditioning on the image

The paper we'll talk about today fits (unsurprisingly) into the
Neural Network Methods category.



High-Level Approach

» Kiros et al. take approach inspired by translation: images and
text are different "languages” that can express the same
concept

» Sentences and images are embedded in same representation
space; similar underlying concepts should have similar
representations

» To caption an image:

1. Find that image's embedding
2. Sample a point near that embedding
3. Generate text from that point

» To do image retrieval for a sentence:

1. Find that sentence's embedding
2. Do a nearest neighbour search in the embedding space for
images in our database



Encoder-Decoder Model

» An encoder-decoder model has two components

» Encoder functions which transform data into a
representation space

» Decoder functions which transform a vector from
representation space into data

output -

Tdecode
hidden -

Tencode
input

Figure 2: The basic encoder-decoder structure



Encoder-Decoder Model

» Kiros et al. learn these functions using neural networks.
Specifically:
» Encoder for sentences: recurrent neural network (RNN) with
long short-term memory (LSTM)
» Encoder for images: convolutional neural network (CNN)
» Decoder for sentences: Structure-Content Neural Language

Model
» No decoder for images in this model - that's a separate
question
output -
Tdecode
hidden
Tencode
input

Figure 3: The basic encoder-decoder structure
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Figure 4: The model for captioning/retrieval proposed by Kiros et al.



Recurrent Neural Networks (RNNs)

» Recurrent neural networks
have loops in them

» We propogate information
between time steps

» Allows us to use neural
networks on sequential,
variable-length data

» Our current state is
influenced by input and all X
past states

Figure 5: A basic (vanilla) RNN

Image from Andrej Karpathy



Recurrent Neural Networks (RNNs)

» By unrolling the network through time, an RNN has similar
structure to a feedforward NN

» Weights are shared throughout time - can lead to
vanishing/exploding gradient problem

» RNN's are Turing-complete - can simulate arbitrary programs
(...in theory)
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Figure 6: RNN unrolled through time

Image from Chris Olah



RNNSs for Language Models

» Language is a natural application for RNNs, as it takes a
sequential, variable-length form

dog is barking

Predictions of next words —

RNN state e R

Word embeddings —

Image from Jamie Kiros



RNNs for Conditional Language Models
» We can condition our sentences on an alternate input

dog is barking

Predictions of image caption ——
i i o

RNN state -

Image from Jamie Kiros



RNNSs for Language Models: Encoders

» We can use RNNs to encode sentences in a high-dimensional
representation space

dog

i

.
- Sentence vector

T (distributed representation
L for the text “dog is barking”)
barking

Image from Jamie Kiros



Long Short-Term Memory (LSTM)

Input gate: scales input to cell (write)
Output gate: scales output from cell (read)

Forget gate: scales old cell value (reset)

» Learning long-term dependencies with RNNs can be difficult

» LSTM cells [Hochreiter, 1997] can do a better job at this

> The network explicitly learns how much to " remember” or
"forget” at each time step

» LSTMs also help with the vanishing gradient problem

Image from Alex Graves



Learning Multimodal Distributed Representations

» Jointly optimize text/image encoders for images x, captions v
> s(x,v) is cosine similarity, and vy are a set of random
captions which do not describe image x

min Z max(0, a — s(x, v) + s(x, vk)) + Z max(0 (v, x) + s(v,xx))

» Maximize similarity between x's embedding and its
descriptions’, and minimize similarity to all other sentences

Multimodal space

L




Neural Language Decoders

» That's the encoding half of the model - any questions?
» Now we'll talk about the decoding half

» The authors describe two types of models: log-bilinear and
multiplicative

» The model they ultimately use is based on the more complex
multiplicative model, but | think it's helpful to explain both



Log-bilinear neural language models

>

In sentence generation, we model the probability of the next
word given the previous words - P(w,|wi.p—-1)

We can represent each word as a K-dimensional vector w;

In an LBL, we make a linear prediction of w, with

n—1
F= E Ciw;
i=1

where f is the predicted representation of w,, and C; are
context parameter matrices for each index

We then use a softmax over all word representations r; to get
a probability distribution over the vocabulary

exp(PTw; + b;)
Z}/ exp(FTw; + bj)

P(Wn = i’W1:n—1) =

We learn C; through gradient descent



Multiplicative neural language models

» Suppose we have auxiliary vector u e.g. an image embedding

» We will model P(w,|w1.,—1,u) by finding F latent factors to
explain the multimodal embedding space

» Let T € RY*KXG be a tensor, where V is vocabulary size, K
is word embedding dimension, G is the dimension of u i.e. the
number of slices of T

» We can model T as a tensor factorizable into three matrices
(where WY € RI*Y)

T, = (WY)T . diag(Wu) - W

» By multiplying the two outer matrices from above, we get
E= (W™ )T.W" aword embedding matrix independent of u



Multiplicative neural language models

» As in the LBL, we predict the next word representation with

where E,, is word w;'s embedding, and C; is a context matrix

» We use a softmax to get a probability distribution

exp(Wf"(:, Nf + b;)

P(w, = i|lwi.p—1,u) =
( n | 1:n—1 ) Z}/exp(WfV(i,j)f—Fbj)

where factor outputs £ = (W™ 7). (W' u) depend on u

» Effectively, this model replaces the word embedding matrix R
from the LBL with the tensor T, which depends on u



Structure-Content Neural Language Models

» This model, proposed by Kiros et al. is a form of
multiplicative neural language model
» We condition on a vector v, as above
» However, v is an additive function of " content” and
"structure” vectors
» The content vector u may be an image embedding
» The structure vector t is an input series of POS tags
» We are modelling P(wp|wi.n—1, tn:nik,u)
» Previous words and future structure

A bicycle (INDTNN--)
VBN



Structure-Content Neural Language Models

» We can predict a vector vV of combined structure and content
information (the T's are context matrices)

n+k
v =max() (TO4) + Tyu + b,0)

» We continue as with the multiplicative model described above

» Note that the content vector u can represent an image or a
sentence - using a sentence embedding as u, we can learn on
text alone

context attribute context attribute

g

word distribution word dist. struct content
(a) Multiplicative NLM (b) Structure-content NLM




Caption Generation

1. Embed image

N

oo s w

Use image embedding and closest images/sentences in dataset
to make bag of concepts

Get set of all "medium-length” POS sequences
Sample a concept conditioning vector and a POS sequence
Compute MAP estimate from SC-NLM

Generate 1000 descriptions, rank top 5 using scoring function

» Embed description

» Get cosine similarity between sentence and image embeddings
» Kneser-Ney trigram model trained on large corpus - compute
log-prob of sentence

Average the cosine similarity and the trigram model scores

v



Experiments: Retrieval

» Trained on Flickr8K/Flickr30K
» Each image has 5 caption sentences
» Metric is Recall-K - how often is correct caption returned in
top K results? (or vice versa)
> Best results are state-of-the-art, using OxfordNet features
Flickr8K
Image Annotation Image Search
Model R@1 R@5 R@10 Medr | R@1 R@5 R@10 Medr
Random Ranking 01 06 11l 631 | 01 05 10 500
SDTRNN [6] 75 180 286 32 61 185 290 2
4 DeViSE [5] 48 165 213 28 59 201 296 29
+ SDT-RNN [6] 60 227 340 23 66 216 317 25
DeFrag [15] 59 192 273 34 52 176 265 32
+ DeFrag [15] 126 329 440 14 97 296 425 15
m-RNN [7] 145 372 485 11 | 115 310 424 15
Our model 135 362 457 13 | 104 3.0 437 14
Our model (OxfordNet) | 18.0 409  55.0 8 125 370 515 10

Figure 7: Flickr8K retrieval results



Experiments: Retrieval

» Trained on Flickr8K/Flickr30K

» Each image has 5 caption sentences

» Metric is Recall-K - how often is correct caption returned in

top K results? (or vice versa)
> Best results are state-of-the-art, using OxfordNet features
Flickr30K
Image Annotation Image Search

Model R@1 R@5 R@10 Medr | R@1 R@5 R@10 Medr
Random Ranking 01 06 11 631 | 01 05 10 500
TDeViSE [3] 45 181 292 %% 67 219 327 25
+ SDT-RNN [6] 96 298 411 16 89 298 411 16
+ DeFrag [15] 142 377 513 10 | 102 308 442 14
t DeFrag + Finetune CNN [15] | 164 402 547 8 103 314 445 13
m-RNN [7] 184 402 509 10 | 126 312 415 16
Our model 148 392 509 10 | 118 340 463 I3
Our model (OxfordNet) 230 507 629 5 168 420 565 8

Figure 8: Flickr30K retrieval results



Qualitative Results - Caption Generation Successes

» Generation is difficult to evaluate quantitatively

: : a wooden table and chairs
2 '

a car is parked in arranged in a room .

the middle of nowhere .

a little boy with a bunch

a ferry boat on a marina
of friends on the street .

with a group of people .




Qualitative Results - Caption Generation Failures

» Generation is difficult to evaluate quantitatively

the two birds are trying a giraffe is standing next a parked car while
to be seen in the water . to a fence in a field . driving down the road .
(can't count) (hallucination) (contradiction)

a woman and a bottle of wine
in a garden . (gender)

the handlebars are trying
to ride a bike rack .
(nonsensical)




Qualitative Results - Analogies

» We can do analogical reasoning, modelling an image as
roughly the sum of its components

Nearest images
22 : o
-dog + cat= " - » ’ v
. 3 i

-cat + dog =

w - plane + bird =
@ - man + woman =
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Qualitative Results - Analogies

» We can do analogical reasoning, modelling an image as
roughly the sum of its components

Nearest images

- day + night =

- flying + sailing =

m‘ - bowl + box =

L

e
m - box + bowl =




Conclusions

> In their paper, Kiros et al. present a model for image
captioning and retrieval

» The model is inspired by translation systems, and aims to
jointly embed images and their captions in the same space

» To decode from the representation space, we condition on an
auxiliary content vector (such as an image or sentence
representation) and a structure vector (such as POS tags)

» Since the publication of this paper, advances have been made
on related problems, such as:
> Image generation from a given caption
» Attention-based captioning
» State of the art caption generation on the MS-COCO dataset
are Google's model (Show and Tell: A Neural Image Caption
Generator, 2015) and MSR’s model (From Captions to Visual
Concepts and Back, 2015) with 32% of captions passing the
Turing test, compared to 16% for this model



Questions?

Thanks for your attention!
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