Motivation

Can humans and machines make decisions jointly? • Frequently, machine learning models are intended to be used as part of interactive systems, jointly with another decision-maker (DM)

INSTITUT

VECTEUR

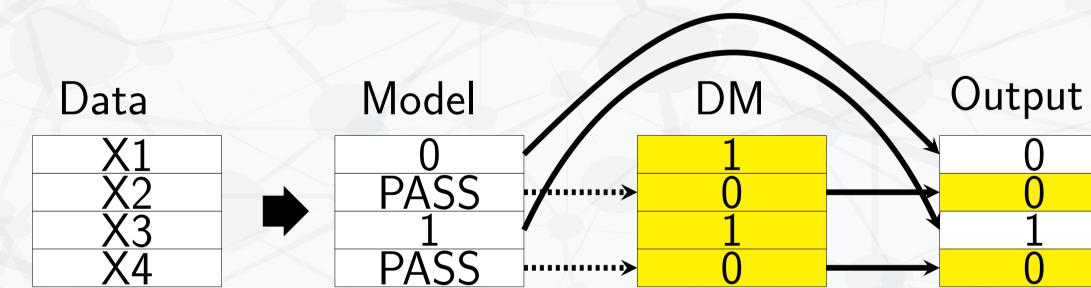
VECTOR

INSTITUTE

Main Idea

We propose learning to defer, or adaptive rejection learning, which lets us optimize a model which will be used as one component of a larger system containing multiple decision-making agents.

A Joint Decision-Making Framework



- Real-world decision systems are interactive processes with many agents
- Our framework: ML model + decision-maker (DM) e.g. human user
- Two-stage decision cascade: model can PASS, in which case DM chooses final output
- In rejection learning (Chow, 1957; Cortes et al., 2016), we also have pass/reject option, but model is considered to be the final stage
- The purpose of PASSing can vary by application (culling a large pool, auditing DM, flagging cases for review, etc)

Example: Model is trained to detect melanoma, and if it PASSes, a human doctor can run an extra suite of medical tests. Model learns that it is very inaccurate at detecting amelanocytic (non-pigmented) melanoma, PASSes if this might be the case. However, if the doctor is even less accurate at detecting amelanocytic melanoma than the model is, we may prefer the model to make a prediction despite its uncertainty.

Predict Responsibly: Improving Fairness and Accuracy by Learning to Defer

David Madras, Toniann Pitassi, Richard Zemel

Model

Given data X, auxiliary data Z, and labels Y, define system output Y, model predictions \hat{Y}_M , model PASS decisions s, and DM predictions \hat{Y}_D : $\hat{Y} = (1-s)\hat{Y}_M + s\hat{Y}_D$

$$\hat{Y}_M = P_M(Y = 1|X);$$
 $s = g_s(X);$ $\hat{Y}_D = P_D(Y = 1|X, Z)$

We describe the joint probability P_{defer} and negative log-likelihood L_{defer} of the system (with ℓ as example-wise cross-entropy):

$$P_{defer}(Y|X,Z) = \prod_{i} [\hat{Y}_{M,i}^{Y_{i}}(1-\hat{Y}_{M,i})^{1-Y_{i}}]^{1-s_{i}} [\hat{Y}_{D,i}^{Y_{i}}(1-\hat{Y}_{D,i})^{1-Y_{i}}]^{s_{i}}$$
$$\mathcal{L}_{defer}(Y,\hat{Y}_{M},\hat{Y}_{D},s) = -\sum_{i} [(1-s_{i})\ell(Y_{i},\hat{Y}_{M,i}) + s_{i}\ell(Y_{i},\hat{Y}_{D,i})]^{s_{i}}$$

This is learning to defer. When optimizing \mathcal{L}_{defer} , we optimize the output of the system as a whole.

We can think of learning to defer as adaptive rejection learning. Rejection learning (Cortes et al., 2016) is equivalent to learning to defer to a DM with loss γ_{reject} on each example (e.g. an oracle for $\gamma_{reject} = 0$).

$$\mathcal{L}_{reject}(Y, \hat{Y}_M, s) = -\sum_{i} [(1 - s_i)\ell($$

Fair Regularization: Suppose some sensitive attribute A (e.g. race). We want equalized odds $(Y \perp A|Y)$ (Hardt et al., 2016). We add a term $\alpha \cdot \mathcal{R}(Y, \hat{Y})$ ($\alpha \in \mathbb{R}$) to the loss \mathcal{L} :

 $\mathcal{R}(Y,\hat{Y}) = \frac{1}{2} \sum |\mathbb{E}(\hat{Y} \neq Y | A = 0, Y = y) - \mathbb{E}(\hat{Y} \neq Y | A = 1, Y = y)|$

Learning Adaptively within Decision Systems

Idea: The system is a mixture-of-experts (Jacobs et al., 1991) between model and DM, with gating variable $s \sim Ber(\pi)$. We optimize Y_M, π .

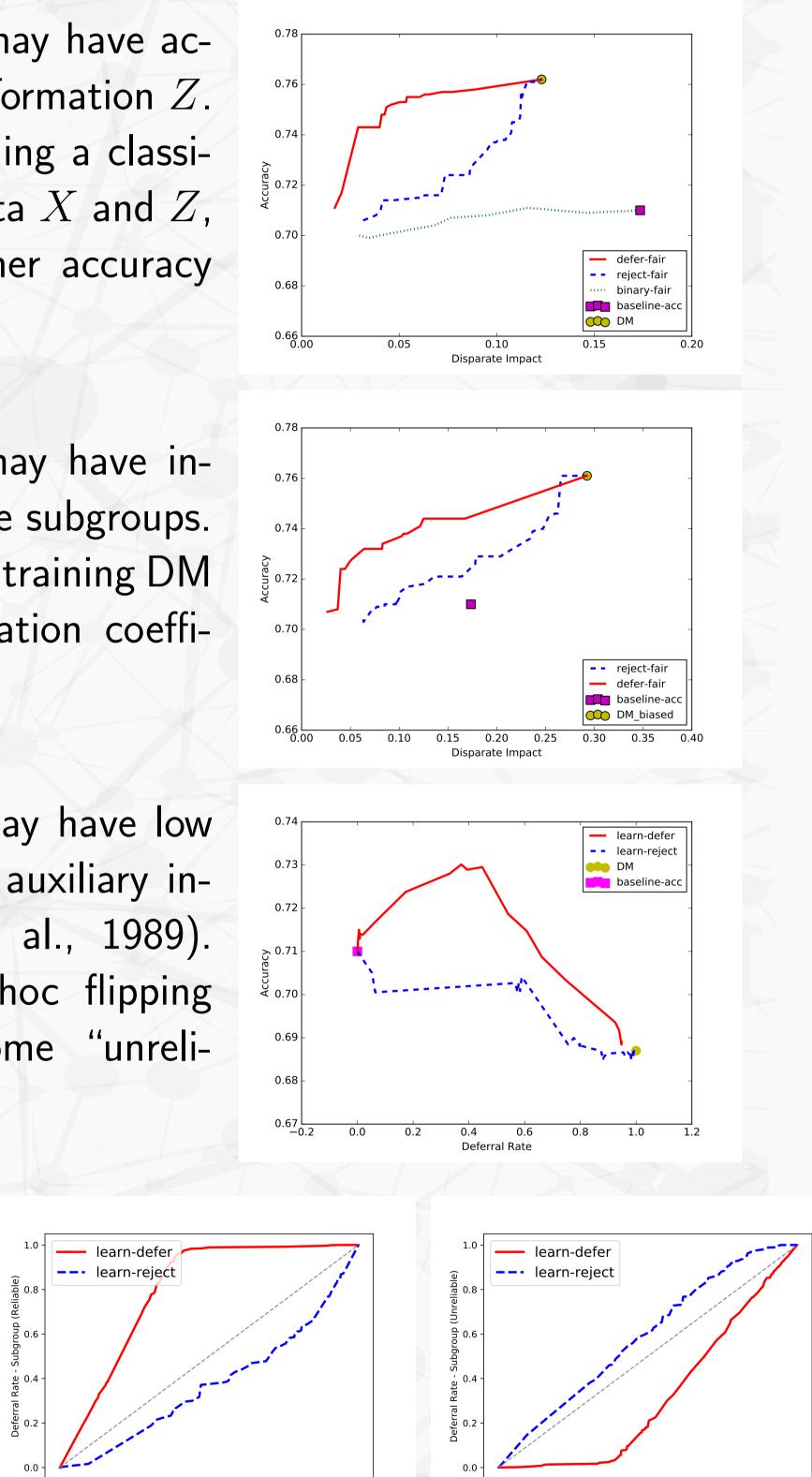
Post-hoc Thresholding $(\pi, \hat{Y}_M \in \{0, 1\})$: Here, $\pi = g_{\pi}(\hat{Y}_M) =$ $g_{\pi}(f_M(X))$. Learn two thresholds t_0, t_1 . Use trained classifier which outputs score β . If $t_0 < \beta < t_1$, set $\pi = 1$; else $\pi = 0$.

Differentiable Model $(\pi, \hat{Y}_M \in [0, 1])$: Here, $\pi = g_{\pi}(\hat{Y}_M, X) =$ $g_{\pi}(f_M(X), X)$. More flexible; a DM's output may depend heterogenously on the data. Parametrize π, Y_M with neural networks, threshold at 0.5 at test time. Use a gradient estimator for discrete sampling $s \sim Ber(\pi)$ at training time (Maddison et al., 2016; Jang et al., 2016).

 $(Y_i, \hat{Y}_{M,i}) + s_i \gamma_{reject}]$

Experiments - Three types of DMs

- A high-accuracy DM may have access to useful auxiliary information Z. Simulated a DM by training a classifier to predict Y from data X and Z, yielding a DM with higher accuracy than the model.
- A highly-biased DM may have internal biases against some subgroups. Simulated these biases by training DM with a fairness regularization coefficient $\alpha < 0$.
- An **inconsistent** DM may have low accuracy, despite having auxiliary information Z (Dawes et al., 1989). Simulated this by post-hoc flipping DM's predictions on some "unreliable" subgroup.
- With inconsistent DM, deferring models PASS less on the unreliable subgroup (figure on right) than rejecting models



- Many ML models will be used as part of larger systems
- This should affect the way we train these models
- Learning to defer is a generalization of rejection learning; allows us to better optimize the behaviour of a system as a whole, for a wide range of objectives



• Datasets: COMPAS (recidivism/race), Health (co-morbidity/age) • Learning to defer improves tradeoffs between accuracy and fairness/deferral rate over learning to reject (results shown for COMPAS)

Takeaways

0.4 0.6