NOTES ON PROVING CORRECTNESS OF BINARY SEARCH

We wish to prove that the program given below is correct with respect to the following Precondition and Postcondition. It is assumed throughout that \(x, n, \text{first}, \text{last} \) and \(\text{mid} \) always contain integer values, that \(\text{found} \) holds a Boolean value, and that \(A(u) \) holds an integer value for every integer \(u \).

Precondition: \(n \geq 1 \). For all \(u, v \) such that \(1 \leq u \leq v \leq n \), \(A(u) \leq A(v) \).

Postcondition: If for some \(u, 1 \leq u \leq n \), \(A(u) = x \), then \(\text{found} = \text{true} \) and \(1 \leq \text{first} \leq n \) and \(A(\text{first}) = x \). If there is no \(u, 1 \leq u \leq n \), such that \(A(u) = x \), then \(\text{found} = \text{false} \).

```plaintext
first:=1
last:=n
loop
exit when first=last
mid:=(first+last) div 2
if x>A(mid) then
    first:=mid+1
else
    last:=mid
end if
end loop
if x=A(first) then found:=true else found:=false end if
```

From now on, we will assume that \(n \) and \(A \) are fixed, and satisfy the Precondition. To prove correctness for this algorithm, the key lemma to be proved is as follows.

Loop Invariant Lemma: At every visit to the exit test
1. \(1 \leq \text{first} \leq \text{last} \leq n \) and
2. if there is some \(u, 1 \leq u \leq n \), \(A(u) = x \), then there is some \(u, \text{first} \leq u \leq \text{last} \), \(A(u) = x \).

A key point which is needed to prove this lemma is the following sub-lemma, which should be proved separately.

Sub-Lemma:
For all integers \(a \) and \(b \), if \(a < b \), then \(a \leq (a+b) \div 2 < b \).

Proof of Sub-Lemma:
Since \(a \leq b \), \((a+b) \div 2 \geq (a+a) \div 2 = a \).
Since \(a \leq b - 1 \), \((a+b) \div 2 \leq (b-1+b) \div 2 = b-1 < b \).
Proof of Loop Invariant Lemma:
For every i such that the loop gets executed at least i times, let $first_i$ and $last_i$ be the values of $first$ and $last$ after the i-th execution.
Let $P(k)$ be: If the loop is executed at least k times, then
(1) $1 \leq first_k \leq last_k \leq n$ and
(2) if there is some u, $1 \leq u \leq n$, $A(u)=x$, then there is some u, $first_k \leq u \leq last_k$, $A(u)=x$.
We will prove that $P(k)$ holds for all natural numbers k, by (simple) induction.

Base Case: We have to show that $P(0)$ holds. This is left as an exercise.

Induction Step: Let $i \geq 0$ and assume $P(i)$ holds. We want to prove $P(i+1)$. Assume the loop gets executed at least $i+1$ times. From $P(i)$ we know $1 \leq first_i \leq last_i \leq n$, and since the program didn't halt after i iterations, $first_i \neq last_i$; so we know $1 \leq first_i < last_i \leq n$. Because of the way mid gets assigned, the sub-lemma tells us that $1 \leq first_i < mid < last_i \leq n$.

CASE 1: $x > A(mid)$.
Then $first_{i+1} = mid + 1$ and $last_{i+1} = last_i$. So $1 \leq first_i < first_{i+1} \leq last_{i+1} = last_i \leq n$, so $1 \leq first_{i+1} \leq last_{i+1} \leq n$. Now assume that $A(u) = x$ for some u, $1 \leq u \leq n$. By $P(i)$, $A(u) = x$ for some u, $first_i \leq u \leq last_i$. Because A is sorted between positions 1 and n, it is sorted between positions $first_i$ and $last_i$; since $first_i < last_i \leq n$ and $x > A(mid)$, it must be the case that $A(u) = x$ for some u, $mid + 1 \leq u \leq last_i$, that is for some u, $first_{i+1} \leq u \leq last_{i+1}$.

CASE 2: $x \leq A(mid)$. This case is left as an exercise.

Proof of Partial Correctness: Assume that the program halts. So $first = last$, and so by the Loop Invariant Lemma, $1 \leq first = last \leq n$.

CASE 1: There is some u, $1 \leq u \leq n$, $A(u) = x$.
By the Loop Invariant Lemma, there is some u, $first \leq u \leq last$, $A(u) = x$.
So $A(first) = x$, found gets assigned true, and the Postcondition holds.

CASE 2: Otherwise. This case is left as an exercise.

Proof of Termination: Consider the integer quantity $last_i - first_i$. By the Loop Invariant Lemma, this quantity is always ≥ 0. So it suffices to show that $last_{i+1} - first_{i+1} < last_i - first_i$ (assuming there are at least $i+1$ iterations). So consider an arbitrary $i \geq 0$, and let $mid = (first_i + last_i) \div 2$.

CASE 1: $x > A(mid)$.
From the proof above, we have $1 \leq first_i < first_{i+1} \leq last_{i+1} = last_i \leq n$, and so $last_{i+1} - first_{i+1} < last_i - first_i$.

CASE 2: $x \leq A(mid)$. This case is left as an exercise.