CSC209S L0101/L5101 Spring '00

Assignment 3
Handed Out: March 3, 2000 Due: March 24, 2000

Tic-Tac-Toe Via Inter-Process Communication (50 Marks)

In this assignment we will be exploring different methods of inter-process communication (IPC).
Specificaly, we will look at the following methods:

Signals

Semaphores

Shared Memory

Pipes

UNIX Domain Sockets

The first two methods are used for synchronization of access to a shared resource (shared memory in the
case of this assignment). With the first two methods we will use shared memory to facilitate the passing
of information between the processes. The last two methods manage synchronization and information
flow in a single mechanism.

A classic operating system problem is that of co-ordinating data transfer between two processes. This
assignment will involve a specific instance of this problem called the bounded buffer problem, with a
buffer size of one "move" (see below). The process produces a move and stores the value in a common
buffer that can only hold one move. The other process obtains the value from the storage location and
consumesit. The roles then reverse, and the second process produces a move. To guarantee integrity,
each value produced must be consumed (not lost via overwriting by a speedy producer with a slow
consumer) and no value should be consumed twice (such as when a consumer is faster than the
producer).

For this assignment you will write a single program, in four steps.

The Program Synopsis

Y our program will be named "ipttt" (short for Inter-Process Tic-Tac-Toe). The programiscalled as
follows:

ipttt

Y our program creates a process pair by having the parent f or k() to create achild. Both the parent and
the child maintain a separate copy of the Tic-Tac-Toe game board, a 3x3 array of characters into which
the parent writes'P' to indicate a move, and the child writes'C'. Use blanks to denote spaces where no
move has been made. Both processes must recognize when the game is over (3 like charactersin arow,

CSC209-F99 Assignment #3 Pagelof 1

or no empty spaces left) and terminate. The child prints out its game board before terminating. When
the parent detects game over, it should wai t () for the child, and then print out its own copy of the
game board for comparison before terminating. To track the process of the game, each player should
report its movesto st dout asit makes them.

Y ou may use whatever algorithm you wish for making moves, including random guesses. Both
processes must abide by the rules (for example, one process can't attempt to play out of turn or overwrite
aprevious move).

Part A — Synchronization using Semaphores, Data Communication via Shared Memory

Set up a shared memory buffer that both child and parent processes can access, and use it to pass moves
between them. Y ou must ensure that data doesn’t get over-written by the producer before the consumer
readsit, and that the consumer doesn’'t read the same datatwice. To achieve this, create a semaphore
which protects access to the shared memory, and use the “mode” member of Move (see below) to
indicate that the buffer isfull (i.e. the consumer should read it) or empty (i.e. that the producer should
writeit). If the producer wants to write to the buffer, it first gains access via the semaphore. If “mode”
is empty, then the producer writes its data, sets mode to full, and releases the semaphore. If modeisfull,
then the producer rel eases the semaphore and sleeps for some random amount of time before trying
again. If the consumer wants to read the buffer, it gains access via the semaphore. If modeisfull, then
the consumer reads the data, sets mode to empty, and releases the semaphore. 1f mode is empty, the
consumer rel eases the semaphore and sleeps arandom amount of time. For sleeping, use us! eep()
with a parameter in the range of 100 to 10000. Enclose all code specific to Part A within "#i f def
SEMAPHORE" blocks.

Part B — Synchronization using Signals, Data Communication via Shared Memory

Asin Part A, set up a shared memory buffer. Thistime there is no mode member in the move structure.
Instead, set up appropriate signal handlers so the processes can signal each other when it is their turn.
For example, after the producer finishes writing the buffer, it should signal the consumer that the buffer
can be read. It then waits for asignal from the consumer that the buffer has been read. The consumer
reads the buffer when it receives a signal from the producer, and signals the producer when the buffer
has been read. Use SI GUSR1 for both signals. Y ou may find it useful to set up the parent’s signal
handler before the fork, and have the child signal the parent when it has set up its signal handler and is
ready to start. Enclose all code specific to Part B within "#i f def SI GNAL" blocks.

Part C — Data Communication via Pipes

For this part you do not need shared memory, as the pipeitself conducts the data. The producer should
usewr it e() tofeed movesinto the pipe, and the consumer should user ead() to read moves from
the pipe. Enclose all code specific to Part C within "#i f def PI PE" blocks. You will need a bi-
directiona pipe.

Hint: You may find it easiest to do this part first!

CSC209-F99 Assignment #3 Page 2 of 2

Part D — Data Communication via UNIX Domain Sockets

For this part, create a UNIX Domain socket connection between the producer and the consumer. The
producer should be the server. Since the client (child) may run before the server (parent) is completely
set up, the consumer should retry the socket connection at one-second intervals until the connection
succeeds, or a maximum number of attempts (10) has elapsed. The producer then writes blocks into the
socket, and the consumer reads data from the socket. Enclose all code specific to Part D within

"#i f def SOCKET" blocks.

Hint: You may find it easiest to do this part second!

Program Design

The program begins by initializing any necessary data structures, then calling f or k() to create a child
process. The parent moves first in the game.

Data Structures

Y our program will make moves one at atime. Y ou must use the following data structures/definitions:

#i f def SEMAPHORE
t ypedef enum (AccessEnpty, AccessFull) AccessMde ;
#endi f
t ypedef struct {
char data ; // character to wite on ganeboard
int x,y ; // location in which to wite character
#i f def SEMAPHORE
AccessMbde node
#endi f
} Move ;

This data structure is designed to facilitate transfer of data between the parent and child processes. Y our
program should create a variable of thistype, either asalocal variable or by allocating memory via
mal | oc() .

Use of the "mode" member of Block

The"node" member exists only when using semaphores to allow the producer to notify the consumer
when new datais ready for reading, and alows the consumer to signal to the producer when the data has
been read. It workslike this:

Upon program initialization, it should be set to AccessEnpt y to signal that thereis no datain the
buffer

After datais written to the buffer (only done if nrode == AccessEnpt y), the producer sets
node to AccessFul | .

After reading from the buffer (only done if nrode == AccessFul |), theconsumer set s node
= AccessEnpty.

CSC209-F99 Assignment #3 Page 3 of 3

Version Specific Data Parameters

typedef struct {
#i f defined(SEMAPHORE) || defined(SI GNAL)
/* put any decl arations here you need for both the semaphore & signal versions */
#endi f
#i f def SEMAPHORE
/* put any decl arations here you need for the semaphore version */
#endi f
#i f def SI GNAL
/* put any decl arations here you need for the signal version */
#endi f
#i f def Pl PE
/* put any decl arations here you need for the pipe version */
#endi f
#i f def SOCKET
/* put any declarations here you need for the sockets version */
#endi f
} Parns ;

Use this structure to define any version specific parameters you need. For example, for the pipe version,
you will place any file descriptors you require here. The first section isfor any parameters which are
used by both the signals and semaphores version (i.e. any shared memory parameters).

Special Functions
Y our program will declare and implement the following functions:

void InitlPCpre(Parns *p);

void InitlPCpost(Parnms *p, int parent);
voi d SendMbve(Move *t heMove, Parns *p);
voi d ReadMove(Move *t heMove, Parns *p);
voi d C eanupl PC(Parnms *p, int parent);

Y ou should use these functions to hide the specifics of your |PC method. This means that most (all?) of
your conditional compilation directives will be in these functions. The function | ni t | PCpr e() isto
be used for any initialization which needs to be done beforef or k() ,and | ni t | PCpost () for any
which needs to be done after f or k() . Note the latter has a Boolean parameter to specify whether the
parent or child isrunning it. Y ou may not change their definitions. A simple pseudo-code version of the
program is as follows:

int main(int argc, char *argv)
{

Parnms nyParns ;

Move nyMove ;

i nt pid ;

initialize ganme board ...

I ni t1PCpre(&nyParns);
if ((pid=fork()) ==0) { /* child */

CSC209-F99 Assignment #3 Page 4 of 4

I ni t1 PCpost (&nyPar s, Fal se);

whi l e (not Lastnove)

{
ReadMove(&y Move, &nyParns);
/1 generate nove here ...
SendMove(&ryMove, &nyPar ns) ;

}

} else { /* parent/producer */
I ni t1PCpost (&ryParns, True);
whil e (not eof (source))

{

/1 generate nove here ...
SendMove(&ryMove, &nyPar ns) ;
ReadMove(&y Move, &nyParns);

} }

Cl eanupl PC(&ryparnms, pid); /* both parent and child do this */
}
Use of Global Variables

Y ou will refrain from using any global variables except for variables used by signal handlersto
communicate with ReadMove() or SendMove() . Markswill be deducted for any unnecessary use
of aglobal variable. You are free of course to use local static variablesin functions.

Conditional Compilation

Y ou will write one set of code which can be compiled into four different programs by using conditional
compilation. The program is compiled as follows:

Part A gcc —DSEMAPHORE ipttt.c —o ipttt
Part B gcc —DSI GNAL ipttt.c —o ipttt
Part C gcc —DPI PE ipttt.c —o ipttt
Part D gcc —DSOCKET - | socket ipttt.c —o ipttt

As aways, you should hand in a printed version of your program, as well as submitting it electronically
on CDFusing"submt -N a3 csc209h ipttt.c". Youcanoverwrite aprevious submission by
adding the "- f " switch to the submit command. No external documentation is required, but your
program should be well documented.

If you wish to use multiple source files you may, but you must 1) include a makefile, and 2) usetar to
create asinglefile, i pttt.tar, containing al your source files plus the makefile. Y our makefile must
have four targets named “semaphore’, “signa”, “pipe” and “socket” which make Parts A—D
respectively.

The assignment will be marked with 10 marks for each of Parts A—D, with a further 10 marks for the
code common to all parts. The markswill be allocated 30% for style, and 70% for correct operation.

CSC209-F99 Assignment #3 Page5of 5

