
CSC209S L0101/L5101 Spring 00

Assignment 2
Jan 27th, 2000 Due February 25th, 2000

Question 1 (30 Marks)

Write a "mini-shell". It will be invoked with the command "miniShell", and should behave as
follows:

1. When the program begins, it scans all directories in the $PATH environment variable looking for
executable files, and adds the name and absolute path of each one it finds to a hash table (the
name should be used as a "key" for looking up the absolute path). You are responsible for
designing and implementing the hash table yourself.

2. Your program will then repeatedly display the following prompt: "msh> " and accept simple
commands of the form "<commandName> [<parm>]" where <commandName> is the name
of an executable to run, and [<parm>] is a list of 0 or more parameters to pass to the executable
as command line parameters.

3. If the command cannot be found, your program is to output "<commandName>: command
not found.", and then display a new prompt on a new line.

4. The user of your program is to terminate it by typing ^D to signal EOF.

Your program is to use fork() and then one of the exec() family of functions to execute the
desired command. If <commandName> is not an absolute or relative path, then you will attempt to
find an absolute path for it by looking it up in your hash table. You are not required to handle pipes
or I/O redirection, nor are you required to do a command history mechanism, filename expansion, or
aliasing. "miniShell" does not run processes in the background, so after fork()-ing to execute a
command, it should wait for the child process to terminate before displaying a new prompt.

Hand in a printed version of your csh script, as well as submitting it electronically on CDF using
"submit -N a2 csc209h miniShell.c". You can overwrite a previous submission by adding the "-f "
switch to the submit command. Note: The file you submit must be named "miniShell.c" or else the
electronic marking program will not find it, and you will get a mark of 0.

Question 2 (20 marks)

Write a program "ttar" (trivial tar) to concatenate files into an "archive". Its use is one of the
following:

% tar -c <tarfile> {<file>}
% tar -l <tarfile>
% tar -x <tarfile>

where <tarfile> is a non-optional parameter giving the name of the file the data is to be written
into or read from, and {<file>} is a list of one or more file/directory names. When invoked with
the -c option your program creates the named <tarfile>, and adds the named <file>s to it. If
a name to be added is that of a directory, then ttar will recursively add the contents of that

directory to <tarfile>. The format for the file is shown below. When invoked with the -l
option, it gives a listing of all files stored in <tarfile>, and when invoked with the -x option, it
extracts the files. Note that when files are extracted, the directory structure must be preserved.

The ttar file structure is as follows:

"ttar1.0" Bytes 0-6

plus one or more of the following records

<length of file #1 as an unsigned long> Next sizeof(unsigned long) bytes

<relative pathname of file #1 - zero-terminated
character string>

Next strlen(pathname)+1 bytes

<file #1 data> Next "size of file" bytes

Your program is required to do any necessary error checking. That includes, but is not limited to, the
following list:

• unable to read named file

• unable to write named file

• unable to create <tarfile>

• unable to create required directory

• <tarfile> file named does not exist (-l, -x options only)

Hand in a printed version of your csh script, as well as submitting it electronically on CDF using
"submit -N a1 csc209h ttar.c". You can overwrite a previous submission by adding the "-f " switch to
the submit command. Note: The file you submit must be named "ttar.c" or else the electronic
marking program will not find it, and you will get a mark of 0.

