| ntroduction to
UNIX

Credit Where Credit 1IsDue

These dlides for CSC209H have been developed by Sean Culhane, a
previous instructor: | have modified them for this presentation of the
course, but must acknowledge their origins!

S-2

Logging in (1.1)

* Login name, password
o System password file: usually “/ et ¢/ passwd”

« /etc/passwd has7 colon-separated fields:

macl ean: x: 132: 114: Janes MaclLean:

/\/\/\1/\/\/\ 2 /\3/\ /\4/\ /\/\/\/\/\/\5/\/\/\/\/\/\

/[u/ macl ean: /var/shell/tcsh

/\/\/\/\/\6/\/\/\/\ /\/\/\/\/\/\/\7/\/\/\/\/\/\/\

1: user name 5:“Inreal life’
2: password (hidden) 6: SHOME

3: uid 7: shell

4. gid

S-3

Shells (1.2)

 Bourneshell, C shell, Korn shell, tcsh
— command line interpreter that reads user input and executes commands

>1s -1 /var/shell
total 6
| rwxrwxrwx 1 root 12 May 15 1996 csh -> /usr/bin/csh
| rwxrwxrwx 1 root 12 May 15 1996 ksh -> /usr/bin/ksh
| rwxrwxrwx 1 root 17 May 15 1996 newsh -> /Il ocal /sbin/ newsh
| rwxrwxrwx 1 root 11 May 15 1996 sh -> /usr/bin/sh
| rwxrwxrwx 1 root 15 May 15 1996 tcsh -> /local/bin/tcsh

S-4

newsh “man page”

newsh

newsh - shell for new users
SYNOPSI S

newsh
DESCRI PTI ON

newsh shows the CDF rules, runs passwd to force the user to
change his or her password, and runs chsh to change the
user's shell to the default systemshell (/local/bin/tcsh).
FI LES
/ et ¢/ passwd
SEE ALSO
passwd(1), chsh(1)
HI STORY
Witten by John DiMarco at the University of Toronto, CDF

S-5

Files and Directories (1.5)

UNIX filesystem is ahierarchical arrangement of directories & files

Everything startsin adirectory called root whose name is the single
character /

Directory: file that contains directory entries
File name and file attributes

— type

— Sze

— owner

— permissions

— time of last modification

Files. an example

> stat /u/ macl ean

Fil e:

Si ze:
Mode:
Devi ce:
Access:
Modi fy:
Change:

"/ u/ macl ean" -> "/ hones/ul/ macl ean"

17 Al | ocated Bl ocks: O Fil etype: Synbolic Link
(0777711 rwxr wxr wx) U d: (0/ root) Gd: (1/ other)
0/1 Inode: 221 Li nks: 1 Devi ce type: 0/0

Sun Sep 13 18:32:37 1998
Fri Aug 28 15:42:09 1998
Fri Aug 28 15:42:09 1998

S-7

Directories and Pathnames

Command to create adirectory: nkdi r
Two file names automatically created:
— current directory (“. ")
— parent directory (“. . ")

A pathname is a sequence of 0 or more file names, separated by / ,
optionally starting with a /

— absolute pathnames: beginswith a/

— relative pathnames: otherwise

S-8

Working directory

Current working directory (cwd)
— directory from which all relative pathnames are interpreted

Change working directory with thecommand: cd or chdi r
Print the current directory with the command: pwd

Home directory: working directory when welog in
— obtained fromfield6in/ et ¢/ passwd

Can refer to home directory as ~macl ean or $HOVE

S-9

Permissions (1.6)

» When afileiscreated, the UID and GID of the creator are remembered

* Every named file has associated with it a set of permissionsin the form
of astring of bits:

'WXS [FWXS I'wX
owner group others
mode regular directory
r read list contents
" write create and remove
X execute search
S setuid/gid n/a

o setuid/gid executes program with user/group ID of file's owner

 Usechnod to change permissions
S-10

Input and Output (1.7)

» File descriptor
— asmall non-negative integer used by kernel to identify afile

» A shell opens 3 descriptors whenever a new program is run:
— standard input (normally connected to terminal)
— standard output
— standard error

 Re-direction:
|s >file.li st

S-11

Basic UNIX Tools

mn ("man -k", "man man") (1. 13)
s -la ("hidden files")

cd

pwd

du, df

chnod

cp, mv, rm (in cshrc: "alias rmrm-i" ...)
nkdir, romdir (rm-rf)

di ff

grep

sort

S-12

More Basic UNIX Tools

nore, |ess, cat

head, tail, wc
conpress, unconpress,
gzi p, gunzip, zcat

| pr, I pg, Iprm

quota -v a209xxxx
pgquota -v a209xxxx

| ogout, exit

mail, mh, rn, trn, nn
who, fi nger

dat e, password

S-13

C Shell Commands

whi ch

echo

bg, fg, jobs, kill, nice
alias, unalias

dirs, popd, pushd

exi t

sour ce

rehash

set/ unset

S-14

Additional Commands

arch

cal

psS

host nane

cl ear

tar

upti ne

Xdvi

gs, ghostvi ew
setenv, printenv

S-15

| ntroduction to the
C Shell

What is the Shell? (Ch.6)

A command-line interpreter program that is the interface between the
user and the Operating System.

 Theshdll:
— analyzes each command
— determines what actions to be performed
— performs the actions
 Example:
we - filel > file2

S-17

csh Shdll Facilities

Automatic command searching (6.2)
| nput-output redirection (6.3)
Pipelining commands (6.3)
Command aliasing (6.5)

Job control (6.4)

Command history (6.5)

Shell script files (Ch.7)

S-18

|/O Redirection (6.2)

 stdin (fd=0), st dout (fd=1), stderr (fd=2)

 Redirection examples: (<, >, >>, >&, >, >&)
fm
fm < personal letter
fm > new file
fm < personal letter > newfile
fm >> personal letter
fm < personal letter >& new file
fm > newfile
fm >& newfile

S-19

Pipes (6.3)

 Examples:
who | wc -|
|s /u/csc209h | & sort -r

» For apipeline, the standard output of the first process is connected to
the standard input of the second process

S-20

Flename Expansion (6.5 p170)

 Examples:
ls *.cC
rmfile[1l-6].7
cd ~/bin
| s ~cul hane

* Matches any string (including null)
? Matches any single character
] Matches any one of the enclosed characters
-] Matches any character lexically between the pair
L] Matches any character not enclosed

S-21

Command Aliases (6.5 p167)

 Examples:
alias nd nkdir
alias Ic Is -F
alias rmrm-i
\rm*. o0
unalias rm
al i as
alias nd
alias cd 'cd \!'*; pwd'

S-22

Job Control (6.4)

A job is a program whose execution has been initiated by the user
At any moment, ajob can be running or stopped (suspended)
Foreground job:

— aprogram which has control of the terminal
Background job:

— runs concurrently with the parent shell and does not take control of
the keyboard

Initiate a background job by appending the “&” metacharacter
Commands: j obs, f g, bg, kil |, stop

S-23

Some Examples

al b| c
— connects standard output of one program to standard input of another
— shell runsthe entire set of processes in the foreground
— prompt appears after c completes
a&b&c
— executes aand b in the background and c in the foreground
— prompt appears after c completes

a&bé&c &
— executes al three in the background
— prompt appears immediately
al b|] c &
— same asfirst example, except it runs in the background and prompt
appears immediately

S-24

The History Mechanism (6.5 p164)

 Example session:
alias grep grep -i
grep a209 /etc/passwd > ~/]ist
hi story
cat ~/11i st
I
12
-4
lc
lc > newl i st
grpe a270 /etc/passed | wec -|
“petep

S-25

Shell Variables

(setting)

 Examples:
set V
set V = abc
set V = (123 def ghi)
set V[2] = XXXX
set
unset V

S-26

Shell Variables

(referencing and testing)

 Examples:
echo $term
echo ${tern
echo $V[1]
echo $V[2- 3]
echo $V[2-]
set W= ${V[3]}

set V = (abc def ghi 123)
set N = $#V

echo $?nane

echo ${?V}

S-27

Shell Control Variables (6.6)

filec agiven with tcsh

pr onpt my favourite: set pronpt = “%n %-%"

| gnor eeof disables Ctrl-D logout

hi story number of previous commands retained

mai | how often to check for new mail

pat h list of directories where csh will look for commands (1)
nocl obber protects from accidentally overwriting filesin redirection
nogl ob turns off file name expansion

 Shdll variables should not to be confused with Environment variables.

S-28

Examples:

set listl = (abc def)
set list2 = ghi

set m= ($list2 $listl)
@i =10

@) =% * 2 +5

@1 ++

comparison operators; ==,

Variable Expressions

could be done wth

“set

S-29

File-oriented Expressions

Usage:

-option filenane

where 1 (true) isreturned if selected option istrue, and O (false) otherwise

-r filenanme
-e filenanme
-d filenanme
-w fil enanme
-x filenanme
-0 filenanme

Test if filename can be read

Test if filename exists

Test if filename isadirectory

Test if filename can be written to
Test if filename can be executed

Test if you are the owner of filename

o SeeWang, table 7.2 (page 199) for more

S-30

csh

S-31

csh Script Execution (Ch.7)

o Severa waysto execute a script:
1) /usr/bin/csh script-file
2) chnmod u+x script-file, then:
a) make first line acomment, starting with “#”
— (thiswill make your default shell run the script-file)
b) makefirst line“#! / usr/ bi n/ csh”
— (thiswill ensure csh runs the script-file, preferred!)

o Useful for debugging your script files:
“#1 /usr/ bin/fcsh -x” or “#! /usr/ bin/csh -v”

 Another favourite:
“#! /usr/bin/csh -f”

S-32

If Command

e Syntax:

| f (test-expression) conmand
 Example:

I1f (-w$file2) nv $filel $file2

e Syntax:
| f (test-expression) then
shel | commands
el se
shel | commands
endi f

S-33

I Command (cont.)

e Syntax:

| f (test-expression) then
shel | commands

else if (test-expression) then
shel | conmmands

el se
shel | conmmands

endi f

S-34

foreach Command

e Syntax:
foreach item(list-of-i1tens)
shel | commands
end
 Example:
foreach item(‘Is *.c’)
cp $item ~/. backup/ $item
end

e Specia statements:
br eak causes control to exit the loop

conti nue causes control to transfer to the test at the top

S-35

while Command

e Syntax:
while (expression)
shel | commands
end
 Example:
set count = 0
set limt =7
while ($count !'= $limt)
echo “Hell o, ${USER}”
@ count ++
end

e break and conti nue have same effects asin foreach

S-36

switch Command

e Syntax:
switch (test-string)
case patternl:
shel | commands
br eaksw
case pattern2:
shel | commands
br eaksw
defaul t:
shel | commands
br eaksw
end

S-37

goto Command

e Syntax:
got o | abel

ot her shell conmands

| abel :
shel | commands

S-38

repeat Command

e Syntax:
repeat count conmand

 Example:
repeat 10 echo “hell0”

S-39

Standard Variables

$0 b cdling function name
$N P Nth command line argument value

$argv[Nl P same as above
$* b all the command line arguments

$ar gv b same as above

$# b the number of command line arguments
$< b aninput line, read from stdin of the shell
$$ b process number (PID) of the current process
$! b process number (PID) of the last background process
$? b exit status of the last task

S-40

Other Shell Commands

source file
shift

shift vari abl e
r ehash

e Other commands ... see Wang, Appendix 7

S-41

Example: 1s2

Usage: |s2

produces listing that separately lists files and dirs
set dirs = |Is -F | grep '/'"

set files = |Is -F | grep -v '/"'"

echo "Directories:”
foreach dir ($dirs)

echo " " &dir
end

echo "Files:"

foreach file ($fil es)
echo " " $file

end

S-42

Example: components (Table 7.3)

#1/usr/bin/csh -f
set test = a/b/c.d
echo "the full string is:" $test

echo "extension (:e) is: " $test:e
echo "head (:h) is: " $test:h
echo "root (:r) is: " $test:r

echo "tail (:t) is: " $test:t

out put :

the full string is: a/b/c.d
extension (:e) is: d

head (:h) I1s: alb

#root (:r) iIs: alblc

tail (:t) is: «c.d

S-43

Example: debug

#!'/usr/ bin/csh -x

while ($#argv)
echo $argv][1]
shift

end

while (2) P output of "debug a b"

echo a

a

shift

end

while (1)

echo b

b

shift

end

while (0)

H H OHF HF OH OF OH OHF T OH H

S-44

Example: newcopy

#!/usr/bin/csh -f

An ol d exam questi on:

Wite a csh script “newcopy <dir>" that copies files

fromthe directory <dir> to the current directory.

Only the two nost recent files having the nanme progN. c
are to be copied, however, where N can be any of 1, 2,
3, or 4. The script can be witten in 3 to 5 lines:

set currdir = $cwd
cd $argv] 1]
set list = (' Is -t -1 prog[1-4].c | head -2 |
awk '{print $8}'")
foreach file ($list)
cp $file Scurrdir/.
end

S-45

Basic UNIX
Concepts

What 1s UNIX good for?

Supports many users running many programs at the same time, all
sharing (transparently) the same computer system

Promotes information sharing

More than just used for running software ... geared towards facilitating
the job of creating new programs. So UNIX is“expert friendly”

Got a bad reputation in business because of this aspect

S-47

History (introduction)

Ken Thompson working at Bell Labs in 1969 wanted a small
MULTICS for his DEC PDP-7

He wrote UNIX which was initially written in assembler and could
handle only one user at atime

Dennis Ritchie and Ken Thompson ported an enhanced UNIX to a
PDP-11/20in 1970

Ritchie ported the language BCPL to UNIX in 1970, cutting it down to
fit and calling the result “B”

In 1973 Ritchie and Thompson rewrote UNIX in “C” and enhanced it
some more

Since then it has been enhanced and enhanced and enhanced and ...
See Wang, page 1 for a brief discussion of UNIX variations
POSIX (portable operating system interface) - IEEE, ANSI

S-48

Some Terminology

Program: executable file on disk
Process. executing instance of a program

Process |D: unique, non-negative integer identifier (a handle by which
to refer to aprocess)

UNIX kernel: a C program that implements a general interface to a
computer to be used for writing programs (p6)

System call: well-defined entry point into kernel, to request a service

UNIX technique: for each system call, have afunction of same namein
the standard C library

— user process calls this function
— function invokes appropriate kernel service

S-49

Concurrency

Most modern developments in computer systems & applications rely on:
— communication: the conveying of info by one entity to another
— concurrency: the sharing of resources in the same time frame

note: concurrency can exist in asingle processor system aswell asin
a multiprocessor system.

Managing concurrency is difficult, as execution behaviour (e.g. relative
order of execution) is not always reproducible

More details on thisin the last 1/3 or the course

S-50

Fork (11.10)

The fork system call is used to create a duplicate of the currently
running program

process
A #1
process /
/ fork
process
A #2

The duplicate (child process) and the original (parent process) both
proceed from the point of the fork with exactly the same data

The only difference between the two processes is the fork return value,
1.e. (... see next dide)

S-51

Fork example

Int 1, pid;

| = 5;

printf(“%@d\n”, 1);
pid = fork();

I1f (pid!=0)
| = 6; /* only the parent gets to here */

el se
| = 4; /* only the child gets to here */

printf(“%@d\n”, 1);

S-52

Exec (11.11)

The exec system call replaces the program being run by a process by a
different one

The new program starts executing from its beginning

process A

process A

running running

program X program Y

Variations on exec: execl () ,execv(), etc. which will be
discussed later in the course

On success, exec never returns; on failure, exec returns with value -1

S-53

Exec example

PROGRAM X

int 1I;

| = 5;

printf(“%\n”, 1);

exec(“Y");

| = 6;
printf(“%\n”, 1);
PROGRAM Y

printf(“hello”);

S-54

Processes and File Descriptors

* Filedescriptors (11.1) belong to processes, not programs
« They areaprocess link to the outside world

0)
1
process 2
A)3
2

S-55

PIDs and FDs across an exec

» Filedescriptors are maintained across exec calls:

process A
running
program X

3

process A
running
program Y

3

exec(“Y")

[u/ cul hane/file [u/ cul hane/file

S-56

PIDs and FDs across afork

» Filedescriptors are maintained across fork calls:

process A
#1
f Aoy
3
process A
#H2
3
< \ 4

[/ u/ cul hane/file

S-57

More UNIX
Concepts

Initializing UNIX

Thefirst UNIX programto beruniscalled“/ etc/init” (11.17)
It forks and then execsone “/ et ¢/ get t y” per termina

getty sets up the terminal properly, prompts for alogin name, and then
execs“/ bi n/ | ogi n”

login prompts for a password, encrypts a constant string using the

password as the key, and compares the results against the entry in the
file*/ et c/ passwd”

If they match, “/ usr/ bi n/ csh” (or whatever is specified in the
passwd file as being that user’ s shell) isexec’d

When the user exits from their shell, the process dies. Init finds out
about it (wait system call), and forks another process for that terminal

S-59

Initializing UNIX

5858

e See“top”,“ps -aux”,etc.to seewhat’srunning at any given time

 Theonly way to create a new process isto duplicate an existing
process, therefore the ancestor of ALL processesisi ni t, with pid=1

S-60

How csh runs commands

> dat e
Sun May 25 23:11:12 EDT 1997

When a command is typed csh forks and then execs the typed command:

@@

After the fork and exec, file descriptors O, 1, and 2 still refer to the
standard input, output, and error in the new process

By UNIX programmer convention, the executed program will use these
descriptors appropriately

S-61

How csh runs (cont.)

process running shell, duplicate:
PID 34 fork()
parent process running shell, child process running shell, PID 35
PID 34, waiting for child

differentiate:

exec()
Wa\;gio : c(:f)nld: child process running utility, PID 35
terminate:
v exi t ()

si gnal

< child process terminates PID 35
S-62

parent process running shell,
PID 34, awakens

Fork: PIDs and PPIDs (11.10)

Systemcal: int fork()

If f or k() succeeds, it returnsthe child PID to the parent and returns
O to the child; if it fails, it returns -1 to the parent (no child is created)

Systemcal: 1 nt getpid()

| nt get ppi d()
get pi d() returnsthe PID of the current process, and get ppi d()
returns the PID of the parent process (note: ppid of 1is 1)

example (see next dlide ...)

S-63

PID/PPID example

#i ncl ude <stdio. h>
int main(void)

{
I nt pid;
printf("ORIGA NAL: PID=% PPI D=%l\n", getpid(), getppid());
pid = fork();
if(pid!=0)
printf("PARENT: PID=%l PPI D=% chil d=%l\ n",
getpid(), getppid(), pid);
el se
printf("CHLD. PID=% PPID=%\n", getpid(), getppid());
printf("PID %l term nates.\n\n", getpid());
return(1);
}

S-64

Concurrency Example

Program a:
#!/usr/ bin/csh -f

@count =0

whi | e($count < 200)
@ count ++
echo -n "a"

end

Program b:

#! fusr/bin/csh -f
@count =0
whi | e($count < 200)
@ count ++
echo -n "Db"
end

 When run sequentially (a; b) output is as expected
* When run concurrently (a&; b&) output is interspersed, and re-running

It may produce different output

S-65

Producer/Consumer Problem

Simple example:
who | wc -|
Both the writing process (Wwho) and the reading process (Wc) of a
pipeline execute concurrently
A pipeisusualy implemented as an internal OS buffer

It isaresource that is concurrently accessed by the reader and by the
writer, so it must be managed carefully

S-66

Producer/Consumer (cont.)

consumer should be blocked when buffer is empty
producer should be blocked when buffer isfull

producer and consumer should run independently so far as the buffer
capacity and contents permit

producer and consumer should never both be updating the buffer at the
same instant (otherwise, data integrity cannot be guaranteed)

producer/consumer is a harder problem if there is more than one
consumer and/or more than one producer

S-67

Machine Language

« CPU interprets machine language programs.
1100101 11111111 11100110 00000000

1010001 00000010 01011101 00000000
1100101 00000000 11111111 00100100

» Assembly language instructions bear a one-to-one correspondence
with machine language instructions

MOVE FFFFDCO0O, DO %b =a* 2
MUL #2, DO
MOVE DO, FFFDCO4

S-68

Compilation

High Level Language (HLL) isalanguage for expressing algorithms
whose meaning is (for the most part) independent of the particular
computer system being used

A compiler translates a high-level language into object files (machine
|language modul es).

A linker trandlates object files into a machine language program (an
executable)

Example:

— create object file“f or k. 0” from C program “f or k. c”:
gcc -c fork.c -o fork.o

— create executablefile“f or k” from object file“f or k. 0”:
gcc fork.o -o fork

S-69

Tools and Applications

Vi

cat

maore

date

gce

gdb

csh (or any other shell)

22 22222222222222

UNIX system services

UNIX kernel in C

‘ computer ‘

S-70

C and libc

C Application Programs

YYYYVYYYVYIVIYY

libc - C Interface to UNIX system services

VvV vV V VYV VY VY VY Y VY YVYY

UNIX system services
UNIX kernel inC

computer

S-71

Miscellaneous

 We haven't gone over these in any detail yet:

— | n (symboalic links)

— chnod (permissions)

— man -k forkandman 2 fork (ie: viewing specific pages)
— du (disk space usage)

— quota -v usernane and pquota -v usernane

— nogl ob

S-72

Still more
UNIX

Core Functionality of Shells

built-in commands (1.13, 6.1)
variables (6.6, 6.7)

wildcards (file name expansion, 6.5)
background processing

scripts

redirection

pipes

subshells

command substitution (6.5)

S-74

Executables vs. Built-ins

Most UNIX commands invoke utility programs that are stored as
executable filesin the directory hierarchy

Shells also contains several built-in commands, which it executes
Internally

Type man shel | _buil ti ns for apartial listing

Built-in commands execute as subroutines, and do not spawn a child-
shell viaf or k()

— Expect built-in (e.g. cd) to be faster than external (e.g. Is)

Built-In: Non-Built-In:

cd, echo, jobs, fg, bg IS, cp, more

S-75

Variables (6.6-7)

Two kinds of variables:
— local
— environment
Both hold data in a string format

Main difference: when a shell invokes another shell, the child shell
gets acopy of its parent’ s environment variables, but not itslocal shell
variables

Any local shell variables which have corresponding environment
variables (t er m pat h, user, etc.) are automatically inherited by
subshells

S-76

Variables (cont.)

* Loca (shell) variables:
— Simple variable: holds one value
— List variable: holds one or more values
— Useset andunset to define, delete, and list values

* Environment variables:
— Usesetenv andpri nt env tosetandlist values

— All environment variables are smple (ie: no list variables ...
compare shell variable $pat h to enviroment variable $PATH)

S-77

Startup Files (6.9)

Every timecsh isinvoked, $HOVE/ . cshr c isread, and contents of
the file are executed

If agiven csh invocation isthe login shell, $HOVE/ . | ogi n will also
be read and its contents executed

csh -f starts a shell without reading initialization files
opening a new xterm -Is under X-windows will open a new login shell

S-78

Sourcing files (6.5)

Assume you create afile called “my_aliases’

Typing csh ny_al i ases executesthelinesinthisfile, but it
occursinthe forked csh, so it will have no lasting effect on the
Interactive parent shell

Correct method is to use the source command:
source ny_ali ases

Common setup:
— put al aliasesin afilecaled $HOVE/ . al i as
— add theline “source .adlias’ to thelast line of $HOVE/ . cshrc

S-79

Input Processing (6.5)

 When ainput istyped, it is processed as follows:
— history substitution
— alias substitution
— variable substitution
— command substitution
— file name expansion

S-80

Command Substitution (6.5)

« Can substitute the output from a command into the text string of a

command

set dir = pwd

set nane = pwd /test.c
set x = /bin/ls -1 $file

S-81

UNIX
Systems Programming

System Calls

o System calls:
— perform a subroutine call directly to the UNIX kernel

e 3 maln categories:
— file management
— process management
— error handling

S-83

Error Handling

All system calls return -1 if an error occurs
errno:
— global variable that holds the numeric code of the last system call
perror():
— asubroutine that describes system call errors
Every process has errno initialized to zero at process creation time
When a system call error occurs, er r no is set
See/ usr/include/sys/errno.h
A successful system call never affects the current value of er r no

An unsuccessful system call always overwrites the current value of
errno

S-84

perror ()

Library routine;
void perror(char *str)

perror displaysst r, then acolon (:), then an english description of
the last system call error, as defined in the header file

[usr/include/sys/errno.h
Protocol:
— check system callsfor areturn value of -1

— cdl perror () for anerror description during debugging
(see example on next slide)

S-85

perror () example

#1 ncl ude <stdi o. h>
#1 ncl ude <errno. h>

int main(void)

{
I nt returnVal ;
printf("x2 before the execlp, pid=%\n", getpid());
returnVal = execl p("nonexistent file", (char *) 0);
1 f(returnvVal == -1)
perror("x2 failed");
return(1);
}

S-86

Processes Termination

Orphan process

— aprocess whose parent isthe init process (pid 1) because its
original parent died beforeit did

Terminating aprocess. exi t ()
System call:
Int exit(int status)

Every normal processis achild of some parent, aterminating process
sends its parent a SI GCHL D signal and waits for its termination code

status to be accepted

The C shell stores the termination code of the last command in the
local shell variable st at us

S-87

Zombies

e Zombie process:
— aprocessthat is“waiting” for its parent to accept its return code
— aparent accepts a child s return code by executingwai t ()
— showsupwith'Z'inps -a

* A terminating process may be a (multiple) parent; the kernel ensures
all of its children are orphaned and adopted by 1 ni t

S-88

wal t ()

« Waiting for achild: system call is
Int wait(int *status)

e A processthat callswai t () can:
— block (if al of its children are still running)

— return immediately with the termination status of a child (if achild
has terminated and is waiting for its termination status to be
fetched)

— return immediately with an error (it it doesn’t have any child
[Processes)

 Moredetailsin afew weeks, when we cover Chapter 11 of Wang

S-89

Signals

Unexpected/unpredictable events:
— floating point error
— interval timer expiration (alarm clock)
— death of achild
— control-C (termination request)
— control-Z (suspend request)
Events are called interrupts

When the kernel recognizes such an event, it sends the corresponding
process asignal

Normal processes may send other processes asignal, with permission
(useful for synchronization)

Again, we'll cover thisin much more detail in afew weeks

S-90

Race conditions

A race condition occurs when multiple processes are trying to do
something with shared data and the final outcome depends on the order
In which the processes run

Thisisasituation when using forks: if any code after the fork
explicitly or implicitly depends on whether or not the parent or child
runsfirst after the fork

A parent processcan call wai t () for achild to terminate (may block)

A child process can wait for the parent to terminate by polling it
(wasteful)

Standard solution isto use signals

S-91

Example: Race Condition

#! fusr/bin/csh -f
set count =0
whi | e($count < 50)
set sharedData = cat shareVal
@ shar edDat a++
echo $sharedData >! shareVal
@ count ++
end

* Createtwo identical copies, “a” and “b”
* Runas ./a& ./b&

S-92

Miscellaneous

 From Wang:

—rlogin (9.3)

— rsh (9.3)

—rcp (9.3)

— telnet (9.3)

— ftp (9.4)

— finger (1.9, 4.6)

S-93

C: Primer and
Advanced Topics

Style

e Basics:
— comments
— white space
— modularity

« Naming conventions:
— variableNames ("Hungarian Notation": m_pMyInt, bDone)
— FunctionNames
— tTypeDefinitions
— CONSTANTS

S-95

Brace Styles

K&R: e non-K&R:

if (total > 0) { if (total > 0)

printf(“Pay up!”); { " "
total = 0; printf("Pay up!");
- total = 0 ;
} else {)
printf(“CGoodbye”); el se

} {
printf (" Godbye");

}

S-96

Variables and Storage

e Syntax:
<type> <varNane> [= initVal ue];

o Types (incompletelist):

— char

— short

— int

— long

— float

— double

— all can be: signed (default) or unsigned

S-97

Operators

Arithmetic Operators:

*) /) +1 T %
Relational Operators:
< <=, > >= == | =

Assignment Operators:

= +=, -= *= [= ++ --
— don't abusethese, iee 0 = --0 - O--;
Logic Operators:

&&, ||, !
Bitwise Operators:

& |, ~ >> <<

S-98

Arrays

Arrays start at ZERQ! (amistake you will make often, trust me)
Arrays of int, float, etc. are pretty intuitive
| nt nont hs[12] ;

fl oat scores[30];
Strings are arrays of char (C' s treatment of stringsis not so intuitive)
— see Wang, Appendix 12 for string handling functions
Multi-dimensional arrays:

Int matrix[2][4]; (notmatri x[2, 4])

S-99

Decision and Control

1 f(condition)

st at enent ;
el se
st at enent ;
whil e(condition)
st at enent
for(initial; condition; iteration)
st at enent ;
do
st at enent ;

whil e(condition)

br eak and cont i nue useful inside loops

S-100

Decision and Control (cont)

swtch (expression)

case constant 1:
st at enent ;
br eak;

case const ant 2:
st at enent ;
br eak;

def aul t:
st at enent ;
br eak;

S-101

Scope

Scopes are delimited with curly braces

“{” <scope> “}”
New scopes can be added in existing scopes
Child scopes inherit visibility from parent scope
Parent scope cannot see into child scopes
Outermost scopes are all functions

These scope rules are all similar to those of Turing and other common
programming languages

S-102

Functions

Definition:
<type> <functionNane> ([type paramNane], ...)
No “procedures’ in C ... only functions
Every function should have a prototype
Example:
float area(float wdth, float height);

float area(float wdth, float height)

{
return(wdth * height);

S-103

Preprocessor

#i ncl ude (<file.h> versus “file.h")

#def i ne (constants as well as macros)

#i f def (useful for debugging and multi-platform code)
statenents

#el se

statenents
#endi f

S-104

Structs

struct [<structureNanme>]

{

—

<fi el dType> <fi el dNane>;
[<vari abl eName>] ;
structureName and variableName are optional, but should always have

at least one, otherwise it’s useless (can't ever be referenced)

Example:

struct

{

}

Il nt quantity;
char nane[80] ;
| nvent or yDat a;

S-105

Typedefs and Enumerated Types

t ypedef <typeDecl aration>;
 Example
t ypedef int tBool ean;
t Bool ean fl ag;

enum <enunmNane> { tagl, tag2, ... } <vari abl eNane>
 Example:
enum days { SUN, MON, TUE, WED, THU, FRI, SAT };
enum days today = MON;
or
typedef enum{ SUN, MON, TUE } t Day,;
t Day today = MON;

S-106

Pointers

A pointer is atype that points to another type in memory
Pointers are typed: a pointer to an int is different than a pointer to along

An asterisk before avariable name in its declaration makes it a pointer
— l.e.int *currPoi nter; (pointertoaninteger)
— l.e.char *nanes[10]; (anarray of char pointers)

An ampersand (&) givesthe address of a pointer
— l.e.currPtr = &val ue; (makescurrPtr point to value)

An asterisk can also be used to de-reference a pointer
— l.e.currValue = *currbtr;

S-107

Pointers (cont)

Use brackets to avoid confusion:
—lee*(currPtr++); isverydfferentfrom(*currPtr) ++;

Using ++ on a pointer will increment the pointer’ s address by the size
of the type pointed to

Y ou can use pointers as if they were arrays (in fact, arrays are
Implemented a pointers)

S-108

Command Line Arguments

Int main(int argc, char *argv[])

{

ar gc isthe number of arguments on the command line, including the
program name

The array ar gv contains the actual arguments
Example:
1 f(argc == 3)
printf(“filel:% file2:%\n",
argv[1l], argv[2]);

S-109

Casting

Y ou can force one type to be interpreted as another type through
casting, i€

sonmeSi gnedlnt = (signed int) soneuUnsi gnedl nt;

Be careful, as C has no type checking, so you can mess things up if
you're not careful

NULL pointer should always be cagt, ie:
— (char *) NULL, (int *) NULL, etc.

S-110

Library Functions
for 1/O

Opening and Closing Files (10.2)

FILE *fp;
fp = fopen(fileNanme, “r”);
fclose(fp);

« fpisoftype “FI LE*” (defined in stdio.h)
 fopen returnsapointer (or NULL if unsuccessful) to the specified
fileName with the given permissions:

-7 read
— “w” write (create new, or wipe out existing fileName)
- “a’ append (create new, or append to existing fileName)

— “r+” read and write

S-112

Character-by-Character 1/0

fgetc(fp) #returnsnext character from files referenced by fp
getc(fp) #sameasfgetc, but implemented asamacro
get char () # same as getc(stdin)

e Thesereturn the constant “EOF" when the end-of-file is reached
fputc(c, fp) #outputscharacter cto filereferenced by fp

putc(c, fp) #sameasfputc, but implemented asamacro
putchar(c) # same as putc(¢, stdout)

S-113

Line-by-Line Input

fgets(data, size, fp) #readnextlinefromfp (upto size)
gets(data) # read next line from stdin

« fgets() ispreferabletoget s()
* Returns address of dat a array (or NULL if EOF or other error occurred)
 Example:

#defi ne MAX LENGTH 256

char i nput Dat a] MAX LENGTH] ;

FI LE *f p;

fp = fopen(argv[1l], “r”);

fgets(1 nputData, MAX LENGIH, fp);

S-114

Line-by-Line Output

fputs(data, fp) #printsstring “data’ on stream referenced by fp
puts(data) # same as fputs(data, stdout) except a newline
Is automatically appended

S-115

Formatted Output

printf(fnt, args ...)
fprintf(fp, fm, args ...)
sprintf(string, fnt, args ...)
 Examples:

fprintf(stderr, “Can’t open %\n”, argv[1l]);
sprintf(fileNane, “%”, argv[l]);

 sprintf example above better achieved with“st r cpy() ” function
o K&R book or man pages for all the details

S-116

Formatted | nput

scanf(fnmt, *args ...)

fscanf(fp, fm, *args ...)
sscanf(string, fnm, *args ...)
 Examples:

fscanf(fp, “% %", firstName, |astnane);
sscanf(argv[l], “% %", & ntl, & nt2);

* Returns number of successful args matched ... be careful, scanf should
only be used in limited cases where exact format is know in advance

o SeeK&R book or man pages for all the details

S-117

Binary |/O

fread(buf, size, numtens, fp)
fwite(buf, size, numtens, fp)

 Examples:
fread(readBuf, sizeof(char), 80, stdin);
fwite(witeBuf, sizeof(struct utnmpx), 1, fp);

e Returns number of successful items read or written

e Other functions:
rew nd(fp); fseek(fp, offset, kind); ftell (fp);

S-118

Library Functions

Standard Libraries

Any system call is not part of the C language definition
Such system calls are defined in libraries, identified with the suffix . a
Librariestypically contain many . o object files
To create your own library archivefile:
ar crv nylib.a *.o
Disregard “r anl i b” command in Wang, p 311 (no longer needed)
Lookin/usr/lib and/usr/|ocal/libformostsystem libraries
Canlist al .ofilesinanarchiveuse“ar t /usr/lib/libc.a”
More useful to see all the function names:
[usr/ccs/bin/nm/usr/lib/libc.a | grep FUNC

S-120

Standard Libraries (cont)

By default, gcc links/ usr/ 11 b/ 11 bc. a toal executables

Typing “man 3 i ntro” will givealist of most of the standard library
functions

Any other libraries must be explicitly linked by referring to the absolute
pathname of the library, or preferably by using the “- | ” gcc switch:

gcc *.o /usr/lib/libma -0 mat hExanpl es
gcc *.0 -Im-o0o mat hExanpl es
These. a files are also sometimes referred to as static libraries

Often you will find for each system . a fileacorresponding . so file,
referred to as a shared object (not needed for this course)

Advantage of shared objects: smaller executable files (library functions
loaded at run time)

S-121

Standard Libraries: Example

#1 ncl ude <stdi o. h>

[* #include <math. h> */

Int main(void)

{
printf(“Square root of 2 is %¥\n", sqgrt(2)),;
return(0);

}

* May get various problems/errors when you compile with:
1) gcc exanple.c -o exanple

2) gcc exanple.c -Im-o0 exanpl e
3) gcc exanple.c -l m-o0 exanpl e #with math.nhincluded

S-122

Files and Directories

Disk drives divided into partitions

Each partition contains afilesystem (type df for alisting of
filesystems mounted on any given computer)

Filesystems are mounted onto existing filenames (Fig 8.4, p.241)

Each filesystem has a boot block, a super block, an ilist containing
Inodes (short for index nodes), directory blocks, and data blocks

An inode contains all the information about afile: type, time of |ast
modification/write/access, uid/gid of creator, size, permissions, etc.

Directories are just lists of inodes (2 files automatically created with
mkdir: “. ” (inode of directory) and “. . " (inode of parent directory)

See figure 8.3 (page 240) for an example.

S-123

Example: argc/argv

#i ncl ude <stdi o. h>
#i ncl ude <sys/stat. h>
Int main(int argc, char *argv|[])

{
1 f(argc == 2)
{
struct stat buf;
| f(stat(argv[1l], &buf) I'=-1)
printf(“file % has size %\n”, argv[1],
buf. st _size);
}
return(0);
}

S-124

Miscellaneous

f open/fread/f writelf cl ose, etc. are implemented in terms of
low-level non-standard i/o functionsopen/r ead/wr i t e/cl ose, etc.

There are 3 types of buffering:
— fully buffered (or block buffered):
 actual physical i/o takes place only when buffer isfilled
— line buffered:
 actual i/o takes place when a newline (\ n) is encountered
— unbuffered:
 output as soon as possible

All files are normally block buffered, except stdout (line buffered only
If it refersto aterminal), and stderr (always unbuffered)

Canusef fl ush() toforceabuffer to be cleared

S-125

Advanced Library
Functions

String/Character Handling

All “str” functions require input strings be terminated with anull byte

Some of the most common ones:
strlen,strcpy,strcnp,strcat

st rt ok used for extracting "tokens' from strings

menctpy not just for strings!

strncmp allows limits to be placed on length of strings, other n string
function

Some function for testing/converting single characters:
| sal pha,isdigit,isspace

t oupper,t ol ower

atoi, atol

S-127

Storage Allocation

* Dynamic memory allocation (very important for many C programs):
mal | oc,cal l oc,free,real |l oc
* An (incomplete) example:
#i ncl ude <stdi o. h>
#include <stdlib. h>
struct xx *sp;
sp = (struct xx *) malloc(5 * sizeof(struct xx));
1 f(sp == (struct xx *) NULL)
{
fprintf(stderr, “out of storage\n”);
exit(-1);

S-128

Date and Time Functions

clock_t, clock(), tinme_t, tinme()

Most UNIX time functions have evolved from various sources, and are
sometimes inconsistent, referring to time as one of:

— the number of seconds since Jan 1, 1970 (or Jan 1, 1900)
— the number of clock ticks since Jan 1, 1970 (or Jan 1, 1900)
— the broken down structure “st r uct t ni
(see/ usr/include/tine. h)
— the broken down structure“st ruct ti neval”
(see/ usr/include/ sys/tine. h)

Some are intended for time/date, whereas others are intended for
measuring elapsed time

S-129

Variable Arguments

e Anunder-used but very powerful feature

« printf() isanexamplewherethe number and types of arguments
can differ from invocation to invocation

« /usr/include/ stdarg. h provides definitions of:
— agpecial typenamedva_| i st
— three macros to implement variable arguments:
e va_start
« va_end
e va_arg
» Another useful functionis “vf pri nt f”, asshown in the next slide

S-130

Variable Arguments

o A very useful example:

#i ncl ude <stdarg. h>

voi d Abort(char *fm, ...)

{
va |ist args;
va_start(args, fnt);
fprintf(stderr, "\n\t");
viprintf(stderr, fnt, args);
fprintf(stderr, "\n\n");
va_end(args);
exit(-1);

S-131

Environment Interfacing

Reading environment variables:
getenv(“PATH);

Executing a“$SHELL” shell command:
fflush(stdout);
system “Is -atl”);

Can also execute a system call and have its output sent to a pipe
Instead of stdout: (we'll talk more about pipes in chapter 12)

FI LE *pi pe;
pi pe = popen(“ls -atl”, “r”);
pcl ose(pipe);

S-132

Processes

S-133

walt and waltpid (11.2)

Recall fromapreviousdide: pid t wait(int *status)
wai t () can: (a) block; (b) return with status; (c) return with error

If there is more than one child, wai t () returnson termination of any
children
wali t pi d can be used to wait for a specific child pid

wali t pi d also has an option to block or not to block

pidt waitpid(pid, &status, option);

pi d == -1 waits for any child
opti on == NOHANG non-blocking
option == blocking

wai t pid(-1, &status, 0) equivadentto wait (&st at us)

S-134

example: wait.c

#i ncl ude <sys/types. h>
#i ncl ude <sys/wait. h>

void mai n(void)

{

I nt st atus;
i f(fork() ==
wai t (&st at us

i f(fork() ==
wai t (&st at us

i f(fork() ==
wai t (&st at us

0) exit(7); /* normal exit */
); prExit(status);

0) abort(); /| * generates S| GABRT */
); prExit(status);

0O) status /= 0; /| * generates S| GFPE */
); prExit(status);

S-135

PprExit.c

#i ncl ude <sys/types. h>
#i ncl ude <sys/wait. h>
void prExit(int status)

{
i f(WFEXI TED(status))
printf("normal termnation, exit status = %\ n",
VEEXI TSTATUS(status));
el se if(WFSI GNALED(status))
printf("abnormal term nation, signal nunber = %l\n",
WERMSI G status));
el se if(WFSTOPPED(status))
printf("child stopped, signal nunmber = %\ n",
WETOPSI status));
}

S-136

exec

e Six versons of exec:

execl (char *pat hnane, char *argO, ... , (char*) 0);
execv(char *pathnane, char *argv[]);

execl e(char *pathnane, char *argO, ..., (char*) O,
char *envp[]);
execve(char *pathnanme, char *argv[],
char *envp[]);

execl p(char *filename, char *arg0O, ..., (char*) 0);
execvp(char *filenane, char *argv[]);

S-137

Memory Layout of a C program

high address stack } command-line arguments
¢ and environment variables
grow & shrink «dynamically allocated memory
as needed appearsin the heap
f function invocations and local
variables appear in the stack
heap
uninitialized data } Initialized to zero by exec
Initialized data
> read from program file by exec
text
low address »

S-138

Miscellaneous. permissions

Read permissions for a directory and execute permissions for it are not
the same:

— Read: read directory, obtain alist of filenames

— Execute: lets users pass through the directory when it isa
component of a pathname being accessed

Cannot create anew filein adirectory unless user has write
permissions and execute permission in that directory

To delete an existing file, the user needs write and execute permissions
In the directory containing the file, but does not need read or write
permission for fileitself (!!!)

S-139

Miscellaneous. buffering control

| nt setbuffer(FILE *fp, char *buf, int size)

— gpecifiesthat “buf ” should be used instead of the default system-
allocated buffer, and sets the buffer sizeto “si ze”

— 1if “buf ” iIsNULL, i/o will be unbuffered
— used after stream is opened, but before it isread or written
I nt setlinebuf(FILE *fp)
— usedto change st dout or st derr toline buffered
— can be called anytime
» A stream can be changed from unbuffered or line buffered to block

buffered by using f r eopen() . A stream can be changed from block
buffered or line buffered to unbuffered by using f r eopen()

followed by set buf () with abuffer argument of NULL.

S-140

Signhals

Motivation for Signals (11.15)

When a program forks into 2 or more processes, rarely do they execute
Independently of each other

The processes usually require some form of synchronization, and this
Istypically handled using signals

Data usually needs to be passed between processes also, and thisis
typically handled using pipes and sockets, which we'll discuss in detail
In aweek or two

Signals are usually generated by
— machine interrupts

— the program itself, other programs, or the user (e.g. from the
keyboard)

S-142

| ntroduction

<sys/ si gnal . h> liststhe signal types on cdf. Table 11.5 and
si gnal (5) givealist of some signal types and their default actions

When a C program receives asignal, control isimmediately passed to
afunction called a signal handler

The signal handler function can execute some C statements and exit in
three different ways:

— return control to the place in the program which was executing
when the signal occurred

— return control to some other point in the program
— terminate the program by callingtheexi t (or _exi t) function

S-143

si gnal ()

A default action is provided for each kind of signal, such as terminate,
stop, or ignore

For nearly all signal types, the default action can be changed using the
si gnal () function. The exceptionsare SI GKI LL and SI GSTOP

Usage: signal (int sig, void (*disp)(int))

For each process, UNIX maintains atable of actions that should be
performed for each kind of signal. Thesi gnal () function changes

the table entry for the signal named as the first argument to the value
provided as the second argument

The second argument can be SI G | GN (ignore the signal), SI G_DFL
(perform default action), or a pointer to asignal handler function

S-144

si gnal () example

#i ncl ude <stdio. h>

#incl ude <stdlib. h>

#i ncl ude <sys/signal . h>

int i = 0;

void quit(int code) {
fprintf(stderr, "\nlnterrupt (code=%, i=%l)\n", code, i);
exit(123);

}

void main(void) {

if (signal(SIGANT , quit) == -1) exit(1);
if (signal(SIGTERM quit) == -1) exit(2);
if (signal(SIGQU T, quit) == -1) exit(3);
i f (signal (SIGLL, quit) == -1) print("Can't touch this!l\n);
for(;;)
i f(1 ++ % 5000000 == 0) putc('.', stderr);

S-145

Checking the return value

The datatypethat si gnal () returnsisint

can also use sigset(), returns
voi d (*ol dhandl er) (i nt)

It is possible for achild process to accept signals that are being ignored
by the parent, which more than likely is undesirable

Thus, another method of installing a new signal handler is:
ol dhandl er = sigset(SIGHUP, SIG IGN);

| f(oldhandler '= SIGIGN)
si gset(SI GHUP, newhandl er);

S-146

Signalling between processes

One process can send a signal to another process using the
misleadingly named function call

Kill(int pid, int sig)

Thiscall sendsthe signal “si g” to the process “pi d”

Signalling between processes can be used for many purposes.
— kill errant processes
— temporarily suspend execution of a process
— make processes aware of the passage of time
— synchronize the actions of processes

S-147

Timer signals

Three interval timers are maintained for each process:

— S| GALRM (real-time alarm, like a stopwatch)
— S| GVTALRM (virtual-time alarm, measuring CPU time)
— SI GPROF (used for profilers, which we'll cover later)

Useful functionsto set and get timer info are:
— setitimer(), getitimer()

— alarm() (smpler version: only sets SI GALRM

— pause() (suspend until next signal arrives)

— sl eep() (caused calling process to suspend)

— usl eep() (likesl eep(), but with finer granularity)

Note: sl eep() andusl eep() areinterruptible by other signals

S-148

Pipes

| nter-Process Communication (IPC)

Chapter 12.1-12.3
Data exchange techniques between processes:
— message passing: files, pipes, sockets
— shared-memory model (not the default ... not mentioned in Wang,
but we'll still cover inthis, afew weeks)
Limitations of files for inter-process data exchange:
— slow!
Limitations of pipes:.
— two processes must be running on the same machine
— two processes communicating must be “related”

Sockets overcome these limitations (we' |l cover sockets in the next
lecture)

S-150

File Descriptors Revisited

Section 11.1-2
Used by low-level 1/0
— open(), close(), read(), wite()

declared as an integer
Int fd ;

Not the sasmeasa"filestream”, FI LE *fp
streams and file descriptors are related (see following slides)

S-151

Pipes and File Descriptors

A fork’d child inherits file descriptors from its parent

It's possible to alter theseusing f cl ose() and f open():
fclose(stdin);

FILE *fp = fopen(“/tnp/junk”, “r”);

One could exchange two entries in the fd table by closing and
reopening both streams, but there' s a more efficient way, using dup()
or dup2() (...seenext dide)

S-152

dup() anddup2() (12.2)

newFD = dup(ol dFD);
1 f(newrD < 0) { perror(“dup”); exit(1l); }

or, to force the newFD to have a specific number:

returnCode = dup2(ol dFD, newFD);
| f(returnCode < 0) { perror(“dup2’); exit(1);}

* Inboth cases, ol dFD and newD now refer to the samefile
 Fordup2(),if newrFDisopen, it isfirst automatically closed
 Notethat dup() anddup?2() refer tofd sand not streams

— A useful system call to convert astreamto afdis
Int fileno(FILE *fp);

S-153

pi pe() (12.2)

The pi pe() system call creates an internal system buffer and two file
descriptors: one for reading and one for writing

With a pipe, typically want the stdout of one process to be connected
to the stdin of another process ... thisiswhere dup2() becomes

useful (see next dlide and figure 12-2 for examples)

Usage:
Int fd[2];

pipe(fd); /*fd[O] forreading; fd[1] for writing */

S-154

pl pe() /dup2() example

/* equivalent to “sort < filel | uniq” */
int fd[2];
FILE *fp = fopen(“filel”, “r”);
dup2(fileno(fp), fileno(stdin));
fclose(fp);
pi pe(fd);
if(fork() == 0) {
dup2(fd[1], fileno(stdout));
close(fd[O]); «close(fd[1]);
execl (“/usr/bin/sort”, “sort”, (char *) 0); exit(2);
} else {
dup2(fd[O], fileno(stdin));
close(fd[O]); «close(fd[1]);
execl (“/usr/bin/uniq”, “uniq’, (char *) 0); exit(3);

S-155

popen() and pcl ose() (12.1)

 popen() simplifiesthe sequence of:
— generating a pipe
— forking achild process
— duplicating file descriptors
— passing command execution via an exec()

e Usage:
FI LE *popen(const char *conmmand,

const char *type);
 Example:
FI LE *pi peFP;
pi peFP = popen(“/usr/bin/ls *.c”, “r”);

S-156

Sockets

What are sockets? (12.5)

Sockets are an extension of pipes, with the advantages that the
processes don't need to be related, or even on the same machine

A socket is like the end point of a pipe -- in fact, the UNIX kernel
Implements pipes as a pair of sockets

Two (or more) sockets must be connected before they can be used to
transfer data

Two main categories of socket types ... we'll talk about both:
— the UNIX domain: both processes on same machine

— the INET domain: processes on different machines

Three main types of sockets: SOCK STREAM SOCK DGRAM and
SOCK_RAW ... we'll only talk about SOCK STREAM

S-158

Connection-Oriented Paradigm

SERVER CLIENT
Create a socket Create a socket
socket () socket ()

7 7

Assign a name to the socket
bi nd() @

Establish a queue for connections

|1 sten()
Extract a connection from the queue Initiate a connection

accept () <:] bliched [:> connect ()

S-159

Example: server.c

« FILE“server.c” ... highlights:

socket (AF_UNI X, SOCK STREAM 0);
serv_adr.sun _famly = AF_UN X;

strcpy(serv_adr.sun_path, NAME);

bi nd(orig sock, &serv_adr, size);

|1 sten(orig sock, 1);

accept(orig_sock, &clnt_adr, &clnt_len);

read(new sock, buf, sizeof(buf));

cl ose(sd);
unlink(the file);

S-160

Example: client.c

« FILE“client.c” ... highlights:

socket (AF_UNI X, SOCK STREAM 0);
serv_adr.sun _famly = AF_UN X;
strcpy(serv_adr.sun_path, NAME);

connect (orig sock, &serv_adr, size);
write(new sock, buf, sizeof(buf));
cl ose(sd);

e Note:server.c and cli ent.c needto belinked with the
| 1 bsocket . a library (iecgcc -1 socket)

S-161

The INET domain

The main differenceisthe bi nd() command ... inthe UNIX domain,
the socket nameis afilename, but in the INET domain, the socket
name is a machine name and port number:

static struct sockaddr in serv_adr;
nmenset (&serv_adr, 0, sizeof(serv_adr));

serv_adr.sin famly = AF_I NET;
serv_adr.sin_addr.s _addr = htonl (1 NADDR_ANY) ;
serv_adr.sin_port = htons(6789);

Need to open socket with AF_| NET instead of AF_UNI X
Also need to include<net db. h> and <neti net/i1 n. h>

S-162

The INET domain (cont.)

* Theclient needs to know the machine name and port of the server
struct hostent *host;

host = get host bynane(“eddie.cdf”);
 Note needtolink with| i bnsl . a toresolve get host bynane()

e seeWangfor:
— server.c, client.c UNIX domain example
— Il server.c, iclient.c, INET domain example

S-163

Multiplexed I/O

Motivation

« Consider aprocess that reads from multiple sources without knowing
In advance which source will provide some input first

e Three solutions:
— alternate non-blocking reads on input sources (wasteful of CPU)

— fork aprocess for each input source, and each child can block on
one specific input source (can be hard to coordinate/synchronize)

— usethesel ect () systemcall ... (see next dlide)

S-165

sel ect () (wang, 12.14)

o Usage:
#i ncl ude <sys/tine. h>

#1 ncl ude <sys/types. h>
I nt select(int nfds,
fd set *readfds,
fd set *witefds,
fd set *exceptfds,
struct tineval *tineout);
 wherethethreef d_set variables are file descriptor masks

« fd set isdefinedin<sys/ sel ect. h>, whichisincluded by
<sys/types. h>

S-166

Detalls

The first argument (nf ds) represents the number of bitsin the masks
that will be processed. Typically, thisis 1 + the value of the highest fd

Thethreef d_set arguments are bit masks ... thelr manipulation is
discussed on the next slide

The last argument specifies the amount of time the select call should
wait before completing its action and returning:

— 1f NULL, select will wait (block) indefinitely until one of the file
descriptorsisready for i/o

— iftv_sec andt v_usec are zero, select will return immediately

— If timeva members are non-zero, the system will wait the specified
time or until afile descriptor isready for i/0

sel ect () returnsthe number or file descriptors ready for i/o

S-167

“FD " macros

o Useful macros defined in <sys/ sel ect . h> to manage the masks:

void FD ZERQ(fd_set &fdset);

void FD SET(int fd, fd_set &fdset);
void FD CLR(int fd, fd_set &fdset);
int FDISSET(int fd, fd_set &fdset);

* Notethat each macro is passed the address of the file descriptor mask

S-168

Example

#i ncl ude <sys/types. h>
fd set rmask;
I nt fd; /* a socket or file descriptor */
FD ZERQ(& mask);
FD SET(fd, & nmask); FD SET(fileno(stdin), & mask);
for(;;) {
select(fd+1, & mask, NULL, NULL, NULL);
1 f(FD_ISSET(fileno(stdin, & nmask))
/[* read fromstdin */
| f(FD_I SSET(fd, & nmask))
/* read fromdescriptor fd */
FD SET(fd, & mask); FD SET(fileno(stdin), & mask);

S-169

Shared Memory

Motivation

Shared memory allows two or more processes to share a given region
of memory -- thisisthe fastest form of IPC because the data does not
need to be copied between the client and server

The only trick in using shared memory is synchronizing accessto a
given region among multiple processes -- if the server is placing data
Into a shared memory region, the client shouldn’t try to access it until
the server isdone

Often, semaphores are used to synchronize shared memory access
(... semaphoreswill be covered a few lectures from now)

not covered in Wang, lookup in Stevens (APUE)

S-171

shnget ()

shnyget () isused to obtain a shared memory identifier:

#1 ncl ude <sys/types. h>

#i ncl ude <sys/ipc. h>

#i ncl ude <sys/shm h>

I nt shnget(key t key, int size, int flag);
shnget () returnsashared memory ID if OK, -1 on error

key istypically the constant “I PC_PRI VATE”, which lets the kernel
choose a new key -- keys are non-negative integer identifiers, but
unlike fds they are system-wide, and their value continually increases
to a maximum value, where it then wraps around to zero

Si ze isthe size of the shared memory segment, in bytes
flagcanbe“SHM R’, “SHM W, or “SHM R| SHM W

S-172

shmat ()

Once a shared memory segment has been created, a process attaches it to
Its address space by calling shnat () :

void *shmat(int shmd, void *addr, int flag);
shmat () returns pointer to shared memory segment if OK, -1 on error
The recommended techniqueisto set addr andf | ag to zero, i.e.:

char *buf = (char *) shmat(shmd, 0, 0);
The UNIX commands “i pcs” and “i pcr ni are used to list and remove
shared memory segments on the current machine

The default action is for a shared memory segments to remain in the

system even after the process dies -- a better technique isto use
shnct | () toset up ashared memory segment to remove itself once the

processdies(... see next dlide)

S-173

shiet | ()

« shnttl () performsvarious shared memory operations:
Int shnctl (int shmd, int cnd,
struct shmd _ds *buf);
« cnd canbeoneof | PC_STAT, | PC SET, or | PC_RM D:
— | PC_STAT fillsthe buf data structure (see <sys/ shm h>)
— | PC_SET can change the uid, gid, and mode of theshm d

— | PC_RM D sets up the shared memory segment to be removed
from the system once the last process using the segment terminates
or detached from it — a process detaches a shared memory
segment using shndt (voi d *addr), whichissimilar to
free()

e shnttl () returnsOif OK, -1 on error

S-174

Shared Memory Example

char *ShareMal l oc(int size)

{
int shm d;
char *returnPtr;
| f((shm d=shnget(| PC PRI VATE, size, (SHM R SHMW)) < 0)
Abort("Failure on shnget {size is %}\n", size);
if((returnPtr=(char*) shmat(shmd, 0, 0)) == (void*) -1)
Abort("Failure on Shared Mem (shmat)");
shnectl (shmd, IPCRMD, (struct shmd ds *) NULL);
return(returnPtr);
}

S-175

mrap()

An alternative to shared memory is memory mapped i/o, which maps a
file on disk into a buffer in memory, so that when bytes are fetched from
the buffer the corresponding bytes of the file are read

One advantage is that the contents of files are non-volatile
Usage:
caddr _t mmap(caddr _t addr, size t len, int
prot, int flag, int filedes, off t off);
— addr and of f should be set to zero,
— | en isthe number of bytesto allocate
— pr ot isthefile protection, typically (PROT _READ| PROT_V\RI TE)
— f 1 ag should be set to MAP_ SHARED to emulate shared memory
— fi | edes isafiledescriptor that should be opened previously

S-176

Memory Mapped |/O Example

char *ShareMal | oc(int size)
{
int fd;
char *returnPtr;
i f((fd = open("/tnp/map", O CREAT | O RDWR, 0666)) < 0)
Abort("Failure on open");
i f(|Iseek(fd, size-1, SEEK SET) == -1)
Abort("Failure on | seek");
if(wite(fd, "", 1) I'=1)
Abort("Failure on wite");
i1 f((returnPtr = (char *) mmp(0, size, PROT_READ| PROT_WRI TE,
MAP SHARED, fd, 0)) == (caddr_t) -1)
Abort("Failure on mmap");
return(returnPtr);

S-177

Semaphores

Motivation

Programs that manage shared resources must execute portions of code
called critical sections in a mutually exclusive manner. A common
method of protecting critical sectionsisto use semaphores

Code that modifies shared data usually has the following parts:

Entry Section: The code that requests permission to modify
the shared data.
Critical Section: The code that modifies the shared variable.
Exit Section: The code that rel eases access to the shared data.
Remainder Section: The remaining code.

S-179

The Critical Section Problem

» Thecritical section problem refers to the problem of executing critical
sectionsin afair, symmetric manner. Solutionsto the critical section
problem must satisfy each of the following:

Mutual Exclusion: At most one processisinitscritical section at
any time.
Progress: If no processis executing its critical section, a
process that wishes to enter can get in.
Bounded Waiting: No processis postponed indefinitely.

 An atomic operation is an operation that, once started, completesin a
logical indivisible way. Most solutions to the critical section problem
rely on the existence of certain atomic operations

S-180

Semaphores

A semaphore is an integer variable with two atomic operations. wait and
signal. Other names for wait are down, P, and lock. Other names for
signal are up, V, unlock, and post.

A process that executes await on a semaphore variable S cannot
proceed until the value of Sis positive. It then decrements the value of
S. The signal operation increments the value of the semaphore variable.
Some (flawed) pseudocode:

void wait(int *s) void signal(int *s)
{ {

while(*s <=0) ; (*s) ++;

(*s)--; }

S-181

Semaphores (cont.)

Three problems with the previous dide’s wai t () andsi gnal () :
— busy waiting is inefficient

— doesn’t guarantee bounded waiting

— “++4” and “- - 7 operations aren’t necessarily atomic!

Solution: use system callssenget () and senop() (... seenext dide)

The following pseudocode protects a critical section:
wait(&s);
/[* critical section */
signal (&);
/* remal nder section */
What happensif Sisinitially 0? What happensif Sisinitially 8?

S-182

senget ()

Usage:
#1 ncl ude <sys/types. h>

#i ncl ude <sys/ipc. h>

#i ncl ude <sys/sem h>

#i ncl ude <sys/stat. h>

| nt senget(key t key, int nsens, int senflg);
Creates a semaphore set and initializes each element to zero
Example:

Int sem D = senget (| PC PRI VATE, 1,

SIRUSR | S IWISR);

Like shared memory, i cps andi pcr m can list and remove semaphores

S-183

senop()

Usage: int senop(int semd, struct senmbuf *sops,
| nt nsops);
Increment, decrement, or test semaphores elements for a zero value.
From <sys/ sem h>:
SOpsS->sem num SOopsS->sem op, sops->sem flg;
If sem op ispositive, senop() adds value to semaphore element and
awakens processes waiting for the element to increase

If sem op isnhegative, senop() addsthe value to the semaphore
element and if <0, senop() setsto O and blocks until it increases

If sem op iszero and the semaphore element value is not zero,
senop() blocksthe calling process until the value becomes zero

If senop() isinterrupted by asignal, it returns-1 witherr no = El NTR

S-184

Example

struct senbuf senit[1] ={ 0, -1, 0},
senSignal[1] ={ 0, 1, 0 };
I nt sem D

senmop(sem D, sentignal, 1); /* init to 1 */

while((senmop(sem D, semMit, 1) == -1) &&
(errno == EINTR))

{ I* critical section */ }

whil e((senmop(sem D, sentignal, 1) == -1) &&
(errno == EINTR))

S-185

Posix Threads

Thread Concepts

Threads are "lightweight processes’
— 10to 100 times faster than f or k()
Threads share:

— process instructions, most data, file descriptors, signal
handlers/dispositions, current working directory, user/group Ids
Each thread has its own:

— thread ID, set of registers (incl. Program counter and stack
pointer), stack (local vars, return addresses), er r no, signal mask,

priority
Posix threads will (we think) be the new UNIX thread standard

S-187

Creating a PThread

#i ncl ude <pthread. h>

I nt pthread create(pthread t *tid, pthread attr _t *attr,
void *(*func)(void *), void *arg)

t i d isunique within a process, returned by function
attr

— setspriority, initial stack size, daemon status

— can specify as NULL
func

— function to call to start thread

— acceptsonevoi d * argument, returnsonevoi d *
ar g isthe argument to passto f unc

S-188

Creating a Pthread [cont'd]

e pthread create() returnsO if successful, a+ve error code if not
 doesnot set er r no, but returns compatible codes
e canusestrerror() toprint error messages

Thread Termination

#i ncl ude <pt hread. h>
Int pthread join(pthread t tid, void **status)
e tid

— thethread ID of the thread to wait for

— cannot walit for any thread (cf. wai t ())

S-189

Thread Termination [cont'd]

 status,if not NULL, returnsthevoid * returned by the thread when
It terminates

» athread can terminate by
— returning fromf unc()
— themai n() function exiting
— pthread_exit()

#i ncl ude <pt hread. h>
void pthread exit(void *status),;
e asecond way to exit, returns status explicitly

e st at us must not point to an object local to thread, as these disappear
when the thread terminates

S-190

"Detaching” Threads

#i ncl ude <pt hread. h>
| nt pthread detach(pthread t tid);
» threads are either joinable or detachable

e |f athread is detached, itstermination cannot be tracked with
pt hread_j oi n() - it becomes a daemon thread

#i ncl ude <pt hread. h>
pthread t pthread self(void);

» returnsthethread ID of the thread which calls it
 oftenseept hread _detach(pthread self());

S-191

Passing Arguments to Threads

pthread t thread |D
Int fd, result ;

result = pthread create(& hread | D,
(pthread attr _t *)NULL, nyThreadFcn, (void *)& d);
1 f (result !'= 0)

printf("Error: 9%\n", strerror(result));

e We can pass any variable (including a structure or array) to our thread
function; assumes thread function knows what typeit is

S-192

Thread-Safe Functions

Not all functions can be called fromthreads (e.g. strtok())
— many use global/static variables

— new versions of UNIX have thread-safe replacements, like
strtok r()

Safe:
—ctime_r(), gntine r(), localtinme r(),
rand r(), strtok r()

Not Safe:

—ctime(), gnine(), localtinme(), rand(),
strtok(), gethost XXX(), 1net _toa()

could use semaphores to protect access

S-193

PThread Semaphores

#i ncl ude <pt hread. h>

Int pthread mutex i nit(pthread nmutex t *nane,
const pthread nmutexattr t *attr);

I nt pthread nmutex destroy(pthread nutex t *name),;

I nt pthread nmutex | ock(pthread nutex t *nane),;

I nt pthread mutex tryl ock(pthread nutex t *name),;

| nt pt hread mut ex _unl ock(pthread nutex t *name),;

» pthread semaphores are easier to use than senget () and senop()
o all mutexes must be global
» only the thread that locks a mutex can unlock it

S-194

PThread Semaphores [cont'd]

pthread nmutex t nyMutex ;
| nt status ;

status = pthread nmutex_init(&ryMitex, NULL) ;
| f (status !'= 0)
printf("Error: %\n", strerror(status));
pt hr ead _mut ex | ock(&y Mut ex) ;
/* critical section here */
pt hr ead_nut ex_unl ock(&y Mt ex) ;
status = pthread nutex destroy(&Mt ex);
| f (status !'= 0)
printf("Error: %\n", strerror(status));

S-195

Concurrency Concepts

S-196

Non-determinism

* A processisdeterministic when it always produces the same result
when presented with the same data; otherwise aprocessis called

non-deterministic

\
/
e

» Evaluation proceeds non-deterministically in one of two ways,
producing an output of 10 or 100

» Race conditions lead to non-determinism, and are generally undesirable

S-197

Deadlocks

* A concurrent program isin deadlock if al processes are waiting for
some event that will never occur

o Typical deadlock pattern:
Process 1 is holding resource X, waiting for Y
Process 2 is holding resource Y, waiting for X

Process 1 will not get Y until Process 2 releases it

Process 2 will not release Y until it gets X,
which Process 1 is holding, waiting for ...

S-198

Dining Philosophers

N philosophers are seated
In acircle, one chopstick

between each adjacent pair

Each philosopher needs two
chopsticks to eat, aleft
chopstick and aright
chopstick

A typical philosopher
process alternates between
eating and thinking

(see next dlide)

A A

S-199

Philosopher Process

loop
<get one chopstick>
<get other chopstick>

<eat>

<release one chopstick>
<release other chopstick>

<think>

endloop

S-200

Deadlock Example

« For N=2, call philosophers P1 and P2, and chopsticks C1 and C2
» Deadlocking sequence:

P1 requests; gets C1

P2 requests; gets C2

P1 requests; WAITS for C2

P2 requests; WAITS for C1

** DEADLOCK **

» Can avoid deadlock if the philosopher processes request both chopsticks
at once, and then they get both or wait until both are available

S-201

Comments on Deadlock

In practice, deadlocks can arise when waiting for some reusable
resources. For example, an operating system may be handling severd
executing jobs, none of which has enough room to finish (and free up
memory for the others)

Operating systems may detect/avoid deadlocks by:
— checking continuously on requests for resources
— refusing to allocate resources if allocation would lead to a deadlock
— terminating a process that is responsible for deadlock

One can have a process that sits and watches, and can break a deadlock
If necessary. This process may be invoked:

— on atimed interrupt basis
— when a process wants to queue for aresource
— when deadlock is suspected (i.e.. CPU utilization has dropped to 0)

S-202

|ndefinite Postponement

| ndefinite postponement occurs when a process is blocked waiting for
an even that can, but will not occur in some future execution seguence

This may arise because other processes are “ganging up” on a process
to “starve” it

During indefinite postponement, the overall system does not grind to a
halt, but treats some of its processes unfairly

Indefinite postponement can be avoided by having priority queues
which serve concurrent processes on afirst-come, first-served basis

UNIX semaphores do this, using a FIFO (first-in, first-out) queue for
all requests

S-203

Dekker's Algorithm

[* other, me are threadlDs wth values 0, 1 */
Int turn ;
I nt need[2] = { FALSE, FALSE };

voi d wai t ()

{
need(nme) = TRUE ; turn = other ;
while (need[other] && (turn !'= nme));

}

voi d signal ()

{
need(ne) = FALSE ;

}

S-204

Project Management

Dependencies

Corver 2
T~

OBJ S

CFLAGS

. C. O.

| Server:

| server.
xserver.
cl ean:

Makefile

i server.o xserver.o
= gcc
= -0

$(CC) $(CFLAGS) -c $<

$(0OBIS)
$(CC) $(CFLAGS) $(0BIS) -0 $@

o: include.h globals.h proto.h
o: include.h globals.h proto.h

rm-f *.o0 | Server

S-207

Makefile Macros

<NAME> = <STRI N&
${ <NAME>}
used to simplify makefiles
example: CFLAGS = -g - DDEBUG - DANSI , then can use
${ CFLAGS} inal targets
canomit { } if <NAME> isonly one letter

Special macros.
— $@evaluatesto current target

— $? evaluatesto alist of prerequisites that are newer than the
current target

eg.li1bops : interact.o sched.o gen.o
ar r $@ $?

S-208

Suffix Rules

Unix has many "standard" suffixes(.c .f .0 .s .a .so0)

can specify the same make rule for all files with a given suffix,

.SUFFI XES @ .0 .c .s
.C.0 :
${CC} ${CFLAGS} -c $<
.S.0 :
${AS} ${ASFLAGS} -0 $@ $<

the macro $< isjust like $?, except only for suffix rules

$* evaluatesto afilename (without suffix) of the prerequisite
cp $< $*.tnp
If mai n. c isthe prerequisite, then this evaluates to
Cp main.c nain.tnp

S-209

Multiply-defined globals

|server.c:

#i ncl ude "i ncl ude. h"

void main(void)

{
X _Server Pi d++;
PrintPid();

}

include.h:

#i ncl ude <stdi o. h>
#i nclude "proto. h"
#i ncl ude "gl obal s. h"

roto.h:

XServer.C.

void PrintPid();

#i ncl ude "1 ncl ude. h"
void PrintPid()

{

printf("X ServerPid: %\ n",
X ServerPid);

globals.h:

Int X ServerPid = 14,

S-210

Two Solutions

for initialized globals. for uninitialized globals:
globals.h: globals.h:
#ifdef _NMAIN #ifdef _MAIN
Int X ServerPid = 14; #def i ne EXTERN
#el se #el se
extern X ServerPi d; #defi ne EXTERN extern
#endi f #endi f
iserver.c: FfTERP X;S?ryfrPL?;
#define MAIN set in Init()

#i ncl ude "i ncl ude. h"

S-211

Miscellanea

S-212

gzl p, conpr ess

Usage: gzip [fil enanme] : compress specified filename
gunzi p [fil enane] : uncompress specified filename

Examples:
gzip filel createsfilel.gz
gunzip <file2.gz | nore leaves file2.gz intact

cat file3 | gzip > newkrile.gz leavesfile3intact

conpr ess behaveslikegzi p, using adifferent (less efficient)
compression algorithm is used (resulting files have . Z extension).

Similarly, unconpr ess behaveslikegunzi p

S-213

tar

Traditionally, tar (short for Tape ARchive) was used for backups to
tape drives

It's also useful to create archive files on disk.

Example: creating an archive of adirectory structure:
tar fcvp dirl.tar dirl

Example: uncompressing and extracting atar file:

gunzip < dir2.tar.gz | tar fxvp -
Example: copying adirectory structure:

tar fcvp - dirl | (cd newoc; tar fxvp -)
Advantage over “cp -r p”: preserves symbolic links

S-214

ni ce, nohup

ni ce (csh built-in) sets the priority level of acommand. The higher
the priority number, the slower it will run.

Usagee nice [+ n| - n] command
Example:
nice +20 emacs &
nice -20 I nportantJob onlyroot can give negative value

nohup (csh built-in) makes a process immune to hangup conditions
Usage: nohup conmmand
Example:
nohup bigJob &
iIn ~/ . 1ogout: /usr/bin/kill -HUP -1 >& /dev/null

S-215

Named pipes: mknod()

#i ncl ude <stdio. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#include <fcntl. h>
int main() {
unl i nk(“nanmedPi pe”);
nmknod(“nanmedPi pe”, S IFIFQ 0);
chnod(“nanedPi pe”, 0600);
if(fork() ==0) {
int fd = open(“nanedPi pe”, O WRONLY);
dup2(fd, fileno(stdout)); close(fd);
execl p("ruptinme", "ruptinme", (char *) 0);
} else {
int fd = open(“nanedPi pe”, O RDONLY);
dup2(fd, fileno(stdin)); close(fd);
execl p("sort", "sort", "-r", (char *) 0);

S-216

vfork()

Thetypical f or k() /exec() sequenceisinefficient because
fork() createsacopy of the data, heap, and stack area of the original
process, which is then immediately discarded when exec() iscalled.

vf or k() isintended to create a new process when the purpose of the
new processistoexec() anew program. vf or k() hasthe same
calling sequence and the same return valuesasf or k() .

vf or k() createsthe new process, just likef or k() , without fully

copying the address space of the parent into the child, since the child
won't reference that address space -- the child just callsexec() right
after thevf or k().

Another difference between vf or k() andf or k() isthat vf or k()
guarantees that the child runs first, until the child callsexec() or
exit().

S-217

system)

It is sometimes convenient to execute a command string from within a
program.

For example, to put atime and date stamp into a certain file, one could:

— usetine(),andcti ne() toget and format thetime, then open
afile for writing and write the resulting string.

— use systen(“date > file”); (muchsmpler)

syst em() istypicaly implemented by calling f or k() , exec(),
andwai t pi d()

S-218

| 1 Nt

| i nt isauseful utility that checks programs more thoroughly that
gcc or other compilers

 Usage:
lint filel [file2]
% cat nain.c %lint nmain.c
#1 ncl ude <stdi o. h> vari abl e unused i n function:
voi d mai n() (5) I in main
{
int i1; function returns val ue
printf("Hello\n"); which is always ignored:
} printf

S-219

