
S -1

Introduction to
 UNIX

S -2

Credit Where Credit is Due

• These slides for CSC209H have been developed by Sean Culhane, a
previous instructor: I have modified them for this presentation of the
course, but must acknowledge their origins!

S -3

Logging in (1.1)

• Login name, password
• System password file: usually “/etc/passwd”

• /etc/passwd has 7 colon-separated fields:

 maclean:x:132:114:James MacLean:

 ^^^1^^^ 2 ^3^ ^4^ ^^^^^^5^^^^^^

 /u/maclean:/var/shell/tcsh

 ^^^^^6^^^^ ^^^^^^^7^^^^^^^

1: user name 5: “in real life”
2: password (hidden) 6: $HOME
3: uid 7: shell
4: gid

S -4

Shells (1.2)

• Bourne shell, C shell, Korn shell, tcsh

– command line interpreter that reads user input and executes commands

> ls -l /var/shell

 total 6

 lrwxrwxrwx 1 root 12 May 15 1996 csh -> /usr/bin/csh

 lrwxrwxrwx 1 root 12 May 15 1996 ksh -> /usr/bin/ksh

 lrwxrwxrwx 1 root 17 May 15 1996 newsh -> /local/sbin/newsh

 lrwxrwxrwx 1 root 11 May 15 1996 sh -> /usr/bin/sh

 lrwxrwxrwx 1 root 15 May 15 1996 tcsh -> /local/bin/tcsh

S -5

newsh “man page”

newsh

 newsh - shell for new users

SYNOPSIS

 newsh

DESCRIPTION

 newsh shows the CDF rules, runs passwd to force the user to

 change his or her password, and runs chsh to change the

 user's shell to the default system shell (/local/bin/tcsh).

FILES

 /etc/passwd

SEE ALSO

 passwd(1), chsh(1)

HISTORY

 Written by John DiMarco at the University of Toronto, CDF

S -6

Files and Directories (1.5)

• UNIX filesystem is a hierarchical arrangement of directories & files

• Everything starts in a directory called root whose name is the single
character /

• Directory: file that contains directory entries

• File name and file attributes

– type

– size

– owner

– permissions

– time of last modification

S -7

Files: an example

> stat /u/maclean

 File: "/u/maclean" -> "/homes/u1/maclean"
 Size: 17 Allocated Blocks: 0 Filetype: Symbolic Link

 Mode: (0777/lrwxrwxrwx) Uid: (0/ root) Gid: (1/ other)

Device: 0/1 Inode: 221 Links: 1 Device type: 0/0

Access: Sun Sep 13 18:32:37 1998

Modify: Fri Aug 28 15:42:09 1998

Change: Fri Aug 28 15:42:09 1998

S -8

Directories and Pathnames

• Command to create a directory: mkdir

• Two file names automatically created:
– current directory (“.”)

– parent directory (“..”)

• A pathname is a sequence of 0 or more file names, separated by /,
optionally starting with a /

– absolute pathnames: begins with a /

– relative pathnames: otherwise

S -9

Working directory

• Current working directory (cwd)

– directory from which all relative pathnames are interpreted

• Change working directory with the command: cd or chdir

• Print the current directory with the command: pwd

• Home directory: working directory when we log in
– obtained from field 6 in /etc/passwd

• Can refer to home directory as ~maclean or $HOME

S -10

Permissions (1.6)

• When a file is created, the UID and GID of the creator are remembered

• Every named file has associated with it a set of permissions in the form
of a string of bits:

 rwxs rwxs rwx

 owner group others

 mode regular directory

 r read list contents

 w write create and remove

 x execute search

 s setuid/gid n/a

• setuid/gid executes program with user/group ID of file’s owner
• Use chmod to change permissions

S -11

Input and Output (1.7)

• File descriptor

– a small non-negative integer used by kernel to identify a file

• A shell opens 3 descriptors whenever a new program is run:

– standard input (normally connected to terminal)

– standard output

– standard error

• Re-direction:
 ls >file.list

S -12

Basic UNIX Tools

man ("man -k", "man man") (1.13)

ls -la ("hidden files")

cd

pwd

du, df

chmod

cp, mv, rm (in cshrc: "alias rm rm -i" ...)

mkdir, rmdir (rm -rf)

diff

grep

sort

S -13

More Basic UNIX Tools

more, less, cat

head, tail, wc

compress, uncompress,

gzip, gunzip, zcat

lpr, lpq, lprm

quota -v a209xxxx

pquota -v a209xxxx

logout, exit

mail, mh, rn, trn, nn

who, finger

date, password

S -14

C Shell Commands

which

echo

bg, fg, jobs, kill, nice

alias, unalias

dirs, popd, pushd

exit

source

rehash

set/unset

S -15

Additional Commands

arch

cal

ps

hostname

clear

tar

uptime

xdvi

gs, ghostview

setenv, printenv

S -16

Introduction to the
C Shell

S -17

What is the Shell? (Ch.6)

• A command-line interpreter program that is the interface between the
user and the Operating System.

• The shell:

– analyzes each command

– determines what actions to be performed

– performs the actions

• Example:
wc -l file1 > file2

S -18

csh Shell Facilities

• Automatic command searching (6.2)

• Input-output redirection (6.3)

• Pipelining commands (6.3)

• Command aliasing (6.5)

• Job control (6.4)

• Command history (6.5)

• Shell script files (Ch.7)

S -19

I/O Redirection (6.2)

• stdin (fd=0), stdout (fd=1), stderr (fd=2)

• Redirection examples: (<, >, >>, >&, >!, >&!)

fmt

fmt < personal_letter

fmt > new_file

fmt < personal_letter > new_file

fmt >> personal letter

fmt < personal_letter >& new_file

fmt >! new_file

fmt >&! new_file

S -20

Pipes (6.3)

• Examples:
who | wc -l

ls /u/csc209h |& sort -r

• For a pipeline, the standard output of the first process is connected to
the standard input of the second process

S -21

Filename Expansion (6.5 p170)
• Examples:

ls *.c

rm file[1-6].?

cd ~/bin

ls ~culhane

 * Matches any string (including null)

 ? Matches any single character

[...] Matches any one of the enclosed characters

[.-.] Matches any character lexically between the pair

[!...] Matches any character not enclosed

S -22

Command Aliases (6.5 p167)

• Examples:
alias md mkdir

alias lc ls -F

alias rm rm -i

\rm *.o

unalias rm

alias

alias md

alias cd 'cd \!*; pwd'

S -23

Job Control (6.4)

• A job is a program whose execution has been initiated by the user

• At any moment, a job can be running or stopped (suspended)

• Foreground job:

– a program which has control of the terminal

• Background job:

– runs concurrently with the parent shell and does not take control of
the keyboard

• Initiate a background job by appending the “&” metacharacter

• Commands: jobs, fg, bg, kill, stop

S -24

Some Examples
a | b | c

– connects standard output of one program to standard input of another

– shell runs the entire set of processes in the foreground

– prompt appears after c completes
a & b & c

– executes a and b in the background and c in the foreground

– prompt appears after c completes

a & b & c &

– executes all three in the background

– prompt appears immediately
a | b | c &

– same as first example, except it runs in the background and prompt
appears immediately

S -25

The History Mechanism (6.5 p164)

• Example session:
alias grep grep -i

grep a209 /etc/passwd >! ~/list

history

cat ~/list

!!

!2

!-4

!c

!c > newlist

grpe a270 /etc/passed | wc -l

^pe^ep

S -26

Shell Variables
(setting)

• Examples:
set V

set V = abc

set V = (123 def ghi)

set V[2] = xxxx

set

unset V

S -27

Shell Variables
(referencing and testing)

• Examples:
echo $term

echo ${term}

echo $V[1]

echo $V[2-3]

echo $V[2-]

set W = ${V[3]}

set V = (abc def ghi 123)

set N = $#V

echo $?name

echo ${?V}

S -28

Shell Control Variables (6.6)

filec a given with tcsh

prompt my favourite: set prompt = “%m:%~%#”

ignoreeof disables Ctrl-D logout

history number of previous commands retained

mail how often to check for new mail

path list of directories where csh will look for commands (†)

noclobber protects from accidentally overwriting files in redirection

noglob turns off file name expansion

• Shell variables should not to be confused with Environment variables.

S -29

Variable Expressions

• Examples:
set list1 = (abc def)

set list2 = ghi

set m = ($list2 $list1)

@ i = 10 # could be done with “set i = 10”

@ j = $i * 2 + 5

@ i++

• comparison operators: ==, !=, <, <=, >, >=, =~, !~

S -30

File-oriented Expressions

Usage:
-option filename

where 1 (true) is returned if selected option is true, and 0 (false) otherwise

-r filename Test if filename can be read

-e filename Test if filename exists

-d filename Test if filename is a directory

-w filename Test if filename can be written to

-x filename Test if filename can be executed

-o filename Test if you are the owner of filename

• See Wang, table 7.2 (page 199) for more

S -31

csh

S -32

csh Script Execution (Ch.7)

• Several ways to execute a script:
1) /usr/bin/csh script-file

2) chmod u+x script-file, then:

a) make first line a comment, starting with “#”

– (this will make your default shell run the script-file)
b) make first line “#!/usr/bin/csh”

– (this will ensure csh runs the script-file, preferred!)

• Useful for debugging your script files:
“#!/usr/bin/csh -x” or “#!/usr/bin/csh -v”

• Another favourite:
“#!/usr/bin/csh -f”

S -33

if Command

• Syntax:
if (test-expression) command

• Example:
if (-w $file2) mv $file1 $file2

• Syntax:
if (test-expression) then

shell commands

else

shell commands

endif

S -34

if Command (cont.)

• Syntax:
if (test-expression) then

shell commands

else if (test-expression) then

shell commands

else

shell commands

endif

S -35

foreach Command

• Syntax:
foreach item (list-of-items)

shell commands

end

• Example:
foreach item (‘ls *.c’)

cp $item ~/.backup/$item

end

• Special statements:
break causes control to exit the loop

continue causes control to transfer to the test at the top

S -36

while Command
• Syntax:

while (expression)

shell commands

end

• Example:
set count = 0

set limit = 7

while ($count != $limit)

echo “Hello, ${USER}”

@ count++

end

• break and continue have same effects as in foreach

S -37

switch Command

• Syntax:
switch (test-string)

case pattern1:

shell commands

breaksw

case pattern2:

shell commands

breaksw

default:

shell commands

breaksw

end

S -38

goto Command

• Syntax:
goto label

...

other shell commands

...

label:

shell commands

S -39

repeat Command

• Syntax:
repeat count command

• Example:
repeat 10 echo “hello”

S -40

Standard Variables

 $0 ⇒ calling function name

 $N ⇒ Nth command line argument value

$argv[N] ⇒ same as above

 $* ⇒ all the command line arguments

 $argv ⇒ same as above

 $# ⇒ the number of command line arguments

 $< ⇒ an input line, read from stdin of the shell

 $$ ⇒ process number (PID) of the current process

 $! ⇒ process number (PID) of the last background process

 $? ⇒ exit status of the last task

S -41

Other Shell Commands

source file

shift

shift variable

rehash

• Other commands … see Wang, Appendix 7

S -42

Example: ls2
Usage: ls2

produces listing that separately lists files and dirs

set dirs = `ls -F | grep '/'`

set files = `ls -F | grep -v '/'`

echo "Directories:"

foreach dir ($dirs)

 echo " " $dir

end

echo "Files:"

foreach file ($files)

 echo " " $file

end

S -43

Example: components (Table 7.3)

#!/usr/bin/csh -f

set test = a/b/c.d

echo "the full string is:" $test

echo "extension (:e) is: " $test:e

echo "head (:h) is: " $test:h

echo "root (:r) is: " $test:r

echo "tail (:t) is: " $test:t

output:

the full string is: a/b/c.d

extension (:e) is: d

head (:h) is: a/b

root (:r) is: a/b/c

tail (:t) is: c.d

S -44

Example: debug
#!/usr/bin/csh -x

while ($#argv)

 echo $argv[1]

 shift

end

while (2) ⇒⇒ output of "debug a b"

echo a

a

shift

end

while (1)

echo b

b

shift

end

while (0)

S -45

Example: newcopy
#!/usr/bin/csh -f

An old exam question:

Write a csh script “newcopy <dir>” that copies files

from the directory <dir> to the current directory.

Only the two most recent files having the name progN.c

are to be copied, however, where N can be any of 1, 2,

3, or 4. The script can be written in 3 to 5 lines:

set currdir = $cwd

cd $argv[1]

set list = (`ls -t -1 prog[1-4].c | head -2 |

 awk '{print $8}'`)

foreach file ($list)

 cp $file $currdir/.

end

S -46

Basic UNIX
Concepts

S -47

What is UNIX good for?

• Supports many users running many programs at the same time, all
sharing (transparently) the same computer system

• Promotes information sharing

• More than just used for running software … geared towards facilitating
the job of creating new programs. So UNIX is “expert friendly”

• Got a bad reputation in business because of this aspect

S -48

History (Introduction)

• Ken Thompson working at Bell Labs in 1969 wanted a small
MULTICS for his DEC PDP-7

• He wrote UNIX which was initially written in assembler and could
handle only one user at a time

• Dennis Ritchie and Ken Thompson ported an enhanced UNIX to a
PDP-11/20 in 1970

• Ritchie ported the language BCPL to UNIX in 1970, cutting it down to
fit and calling the result “B”

• In 1973 Ritchie and Thompson rewrote UNIX in “C” and enhanced it
some more

• Since then it has been enhanced and enhanced and enhanced and …

• See Wang, page 1 for a brief discussion of UNIX variations

• POSIX (portable operating system interface) - IEEE, ANSI

S -49

Some Terminology

• Program: executable file on disk

• Process: executing instance of a program

• Process ID: unique, non-negative integer identifier (a handle by which
to refer to a process)

• UNIX kernel: a C program that implements a general interface to a
computer to be used for writing programs (p6)

• System call: well-defined entry point into kernel, to request a service

• UNIX technique: for each system call, have a function of same name in
the standard C library

– user process calls this function

– function invokes appropriate kernel service

S -50

Concurrency

• Most modern developments in computer systems & applications rely on:

– communication: the conveying of info by one entity to another

– concurrency: the sharing of resources in the same time frame

note: concurrency can exist in a single processor system as well as in
a multiprocessor system.

• Managing concurrency is difficult, as execution behaviour (e.g. relative
order of execution) is not always reproducible

• More details on this in the last 1/3 or the course

S -51

Fork (11.10)

• The fork system call is used to create a duplicate of the currently
running program

• The duplicate (child process) and the original (parent process) both
proceed from the point of the fork with exactly the same data

• The only difference between the two processes is the fork return value,
i.e. (… see next slide)

process
A

process
A #1

process
A #2

fork

S -52

Fork example

int i, pid;

i = 5;

printf(“%d\n”, i);

pid = fork();

if (pid != 0)

 i = 6; /* only the parent gets to here */

else

 i = 4; /* only the child gets to here */

printf(“%d\n”, i);

S -53

Exec (11.11)

• The exec system call replaces the program being run by a process by a
different one

• The new program starts executing from its beginning

• Variations on exec: execl(), execv(), etc. which will be
discussed later in the course

• On success, exec never returns; on failure, exec returns with value -1

process A

running

program X

process A

running

program Y

exec(“Y”)

S -54

Exec example
PROGRAM X

int i;

i = 5;

printf(“%d\n”, i);

exec(“Y”);

i = 6;

printf(“%d\n”, i);

PROGRAM Y

printf(“hello”);

S -55

Processes and File Descriptors

• File descriptors (11.1) belong to processes, not programs

• They are a process’ link to the outside world

process
A

0
1

2

3

4
5

S -56

PIDs and FDs across an exec

• File descriptors are maintained across exec calls:

process A
running

program X

3

process A
running

program Y

3

exec(“Y”)

/u/culhane/file /u/culhane/file

S -57

PIDs and FDs across a fork

• File descriptors are maintained across fork calls:

process A
#2

3

process A
#1

3

/u/culhane/file

fork

S -58

More UNIX
Concepts

S -59

Initializing UNIX

• The first UNIX program to be run is called “/etc/init” (11.17)

• It forks and then execs one “/etc/getty” per terminal

• getty sets up the terminal properly, prompts for a login name, and then
execs “/bin/login”

• login prompts for a password, encrypts a constant string using the
password as the key, and compares the results against the entry in the
file “/etc/passwd”

• If they match, “/usr/bin/csh” (or whatever is specified in the
passwd file as being that user’s shell) is exec’d

• When the user exits from their shell, the process dies. Init finds out
about it (wait system call), and forks another process for that terminal

S -60

Initializing UNIX

• See “top”, “ps -aux”, etc. to see what’s running at any given time

• The only way to create a new process is to duplicate an existing
process, therefore the ancestor of ALL processes is init, with pid=1

init init

init

init

getty

init

login

init

csh

S -61

How csh runs commands
> date

Sun May 25 23:11:12 EDT 1997

• When a command is typed csh forks and then execs the typed command:

• After the fork and exec, file descriptors 0, 1, and 2 still refer to the
standard input, output, and error in the new process

• By UNIX programmer convention, the executed program will use these
descriptors appropriately

csh csh

csh

csh

date

csh

S -62

duplicate:
fork()

How csh runs (cont.)

parent process running shell,
PID 34, waiting for child

child process running shell, PID 35

parent process running shell,
PID 34, awakens

wait for child:
wait()

process running shell,
PID 34

child process running utility, PID 35

child process terminates PID 35

terminate:
exit()

signal

differentiate:
exec()

S -63

Fork: PIDs and PPIDs (11.10)

• System call: int fork()

• If fork() succeeds, it returns the child PID to the parent and returns
0 to the child; if it fails, it returns -1 to the parent (no child is created)

• System call: int getpid()

 int getppid()

• getpid() returns the PID of the current process, and getppid()
returns the PID of the parent process (note: ppid of 1 is 1)

• example (see next slide …)

S -64

PID/PPID example
#include <stdio.h>

int main(void)

{

 int pid;

 printf("ORIGINAL: PID=%d PPID=%d\n", getpid(), getppid());

 pid = fork();

 if(pid != 0)

 printf("PARENT: PID=%d PPID=%d child=%d\n",

 getpid(), getppid(), pid);

 else

 printf("CHILD: PID=%d PPID=%d\n", getpid(), getppid());

 printf("PID %d terminates.\n\n", getpid());

 return(1);

}

S -65

Concurrency Example

Program a: Program b:
#!/usr/bin/csh -f #!/usr/bin/csh -f

@ count = 0 @ count = 0

while($count < 200) while($count < 200)

 @ count++ @ count++

 echo -n "a" echo -n "b"

end end

• When run sequentially (a;b) output is as expected

• When run concurrently (a&;b&) output is interspersed, and re-running
it may produce different output

S -66

Producer/Consumer Problem

• Simple example:
who | wc -l

• Both the writing process (who) and the reading process (wc) of a
pipeline execute concurrently

• A pipe is usually implemented as an internal OS buffer

• It is a resource that is concurrently accessed by the reader and by the
writer, so it must be managed carefully

S -67

Producer/Consumer (cont.)

• consumer should be blocked when buffer is empty

• producer should be blocked when buffer is full

• producer and consumer should run independently so far as the buffer
capacity and contents permit

• producer and consumer should never both be updating the buffer at the
same instant (otherwise, data integrity cannot be guaranteed)

• producer/consumer is a harder problem if there is more than one
consumer and/or more than one producer

S -68

Machine Language

• CPU interprets machine language programs:
1100101 11111111 11100110 00000000

1010001 00000010 01011101 00000000

1100101 00000000 11111111 00100100

• Assembly language instructions bear a one-to-one correspondence
with machine language instructions

MOVE FFFFDC00, D0 % b = a * 2

MUL #2, D0

MOVE D0, FFFDC04

S -69

Compilation

• High Level Language (HLL) is a language for expressing algorithms
whose meaning is (for the most part) independent of the particular
computer system being used

• A compiler translates a high-level language into object files (machine
language modules).

• A linker translates object files into a machine language program (an
executable)

• Example:
– create object file “fork.o” from C program “fork.c”:

gcc -c fork.c -o fork.o

– create executable file “fork” from object file “fork.o”:

gcc fork.o -o fork

S -70

UNIX system services

UNIX kernel in C

Tools and Applications

computer

csh (or any other shell)

 vi cat more date gcc gdb …

S -71

UNIX system services

UNIX kernel in C

C and libc

computer

C Application Programs

libc - C Interface to UNIX system services

S -72

Miscellaneous

• We haven’t gone over these in any detail yet:

– ln (symbolic links)

– chmod (permissions)

– man -k fork and man 2 fork (ie: viewing specific pages)

– du (disk space usage)

– quota -v username and pquota -v username

– noglob

– … any others ?????

S -73

Still more
UNIX

S -74

Core Functionality of Shells

• built-in commands (1.13, 6.1)

• variables (6.6, 6.7)

• wildcards (file name expansion, 6.5)

• background processing

• scripts

• redirection

• pipes

• subshells

• command substitution (6.5)

S -75

Executables vs. Built-ins

• Most UNIX commands invoke utility programs that are stored as
executable files in the directory hierarchy

• Shells also contains several built-in commands, which it executes
internally

• Type man shell_builtins for a partial listing

• Built-in commands execute as subroutines, and do not spawn a child-
shell via fork()

– Expect built-in (e.g. cd) to be faster than external (e.g. ls)

Built-In:

cd, echo, jobs, fg, bg

Non-Built-In:

ls, cp, more

S -76

Variables (6.6-7)

• Two kinds of variables:

– local

– environment

• Both hold data in a string format

• Main difference: when a shell invokes another shell, the child shell
gets a copy of its parent’s environment variables, but not its local shell
variables

• Any local shell variables which have corresponding environment
variables (term, path, user, etc.) are automatically inherited by
subshells

S -77

Variables (cont.)

• Local (shell) variables:

– Simple variable: holds one value

– List variable: holds one or more values
– Use set and unset to define, delete, and list values

• Environment variables:
– Use setenv and printenv to set and list values

– All environment variables are simple (ie: no list variables …
compare shell variable $path to enviroment variable $PATH)

S -78

Startup Files (6.9)

• Every time csh is invoked, $HOME/.cshrc is read, and contents of
the file are executed

• If a given csh invocation is the login shell, $HOME/.login will also
be read and its contents executed

• csh -f starts a shell without reading initialization files

• opening a new xterm -ls under X-windows will open a new login shell

S -79

Sourcing files (6.5)

• Assume you create a file called “my_aliases”

• Typing csh my_aliases executes the lines in this file, but it
occurs in the forked csh, so it will have no lasting effect on the
interactive parent shell

• Correct method is to use the source command:
source my_aliases

• Common setup:
– put all aliases in a file called $HOME/.alias

– add the line “source .alias” to the last line of $HOME/.cshrc

S -80

Input Processing (6.5)

• When a input is typed, it is processed as follows:

– history substitution

– alias substitution

– variable substitution

– command substitution

– file name expansion

S -81

Command Substitution (6.5)

• Can substitute the output from a command into the text string of a
command

set dir = `pwd`

set name = `pwd`/test.c

set x = `/bin/ls -l $file`

S -82

UNIX
Systems Programming

S -83

System Calls

• System calls:

– perform a subroutine call directly to the UNIX kernel

• 3 main categories:

– file management

– process management

– error handling

S -84

Error Handling

• All system calls return -1 if an error occurs
• errno:

– global variable that holds the numeric code of the last system call
• perror():

– a subroutine that describes system call errors

• Every process has errno initialized to zero at process creation time
• When a system call error occurs, errno is set

• See /usr/include/sys/errno.h

• A successful system call never affects the current value of errno

• An unsuccessful system call always overwrites the current value of
errno

S -85

perror()

• Library routine:
void perror(char *str)

• perror displays str, then a colon (:), then an english description of
the last system call error, as defined in the header file

 /usr/include/sys/errno.h

• Protocol:

– check system calls for a return value of -1
– call perror() for an error description during debugging

(see example on next slide)

S -86

perror() example

#include <stdio.h>

#include <errno.h>

int main(void)

{

 int returnVal;

 printf("x2 before the execlp, pid=%d\n", getpid());

 returnVal = execlp("nonexistent_file", (char *) 0);

 if(returnVal == -1)

 perror("x2 failed");

 return(1);

}

S -87

Processes Termination

• Orphan process

– a process whose parent is the init process (pid 1) because its
original parent died before it did

• Terminating a process: exit()

• System call:
int exit(int status)

• Every normal process is a child of some parent, a terminating process
sends its parent a SIGCHLD signal and waits for its termination code
status to be accepted

• The C shell stores the termination code of the last command in the
local shell variable status

S -88

Zombies

• Zombie process:

– a process that is “waiting” for its parent to accept its return code
– a parent accepts a child’s return code by executing wait()

– shows up with 'Z' in ps -a

• A terminating process may be a (multiple) parent; the kernel ensures
all of its children are orphaned and adopted by init

S -89

wait()

• Waiting for a child: system call is
int wait(int *status)

• A process that calls wait() can:

– block (if all of its children are still running)

– return immediately with the termination status of a child (if a child
has terminated and is waiting for its termination status to be
fetched)

– return immediately with an error (it it doesn’t have any child
processes)

• More details in a few weeks, when we cover Chapter 11 of Wang

S -90

Signals
• Unexpected/unpredictable events:

– floating point error

– interval timer expiration (alarm clock)

– death of a child

– control-C (termination request)

– control-Z (suspend request)

• Events are called interrupts

• When the kernel recognizes such an event, it sends the corresponding
process a signal

• Normal processes may send other processes a signal, with permission
(useful for synchronization)

• Again, we’ll cover this in much more detail in a few weeks

S -91

Race conditions

• A race condition occurs when multiple processes are trying to do
something with shared data and the final outcome depends on the order
in which the processes run

• This is a situation when using forks: if any code after the fork
explicitly or implicitly depends on whether or not the parent or child
runs first after the fork

• A parent process can call wait() for a child to terminate (may block)

• A child process can wait for the parent to terminate by polling it
(wasteful)

• Standard solution is to use signals

S -92

Example: Race Condition

#!/usr/bin/csh -f

set count = 0

while($count < 50)

 set sharedData = `cat shareVal`

 @ sharedData++

 echo $sharedData >! shareVal

 @ count++

end

• Create two identical copies, “a” and “b”

• Run as: ./a&; ./b&

S -93

Miscellaneous

• From Wang:
– rlogin (9.3)

– rsh (9.3)

– rcp (9.3)

– telnet (9.3)

– ftp (9.4)

– finger (1.9, 4.6)

S -94

C: Primer and
 Advanced Topics

S -95

Style

• Basics:

– comments

– white space

– modularity

• Naming conventions:

– variableNames ("Hungarian Notation": m_pMyInt, bDone)

– FunctionNames

– tTypeDefinitions

– CONSTANTS

S -96

Brace Styles

• K&R:

if (total > 0) {
printf(“Pay up!”);

 total = 0;

} else {

 printf(“Goodbye”);

}

• non-K&R:

if (total > 0)
{
 printf("Pay up!");
 total = 0 ;
}
else
{
 printf("Goodbye");
}

S -97

Variables and Storage

• Syntax:
<type> <varName> [= initValue];

• Types (incomplete list):

– char

– short

– int

– long

– float

– double

– all can be: signed (default) or unsigned

S -98

Operators

• Arithmetic Operators:
*, /, +, -, %

• Relational Operators:
<, <=, >, >=, ==, !=

• Assignment Operators:
=, +=, -=, *=, /=, ++, --

– don’t abuse these, ie: o = --o - o--;

• Logic Operators:
&&, ||, !

• Bitwise Operators:
&, |, ~, >>, <<

S -99

Arrays

• Arrays start at ZERO! (a mistake you will make often, trust me)

• Arrays of int, float, etc. are pretty intuitive
int months[12];

float scores[30];

• Strings are arrays of char (C’s treatment of strings is not so intuitive)

– see Wang, Appendix 12 for string handling functions

• Multi-dimensional arrays:
int matrix[2][4]; (not matrix[2,4])

S -100

Decision and Control

if(condition)

statement;

else

statement;

while(condition)

statement

for(initial; condition; iteration)

statement;

do

statement;

while(condition)

• break and continue useful inside loops

S -101

Decision and Control (cont)

switch (expression)

case constant1:

statement;

break;

case constant2:

statement;

break;

default:

statement;

break;

S -102

Scope

• Scopes are delimited with curly braces
“{” <scope> “}”

• New scopes can be added in existing scopes

• Child scopes inherit visibility from parent scope

• Parent scope cannot see into child scopes

• Outermost scopes are all functions

• These scope rules are all similar to those of Turing and other common
programming languages

S -103

Functions

• Definition:
<type> <functionName> ([type paramName], ...)

• No “procedures” in C … only functions

• Every function should have a prototype

• Example:
float area(float width, float height);

float area(float width, float height)

{

 return(width * height);

}

S -104

Preprocessor

#include (<file.h> versus “file.h”)

#define (constants as well as macros)

#ifdef (useful for debugging and multi-platform code)

 statements

#else

 statements

#endif

S -105

Structs

struct [<structureName>]

{

 <fieldType> <fieldName>;

} [<variableName>];

• structureName and variableName are optional, but should always have
at least one, otherwise it’s useless (can’t ever be referenced)

• Example: struct

 {

 int quantity;

 char name[80];

 } inventoryData;

S -106

Typedefs and Enumerated Types

typedef <typeDeclaration>;

• Example:
typedef int tBoolean;

tBoolean flag;

enum <enumName> { tag1, tag2, ... } <variableName>

• Example:
enum days { SUN, MON, TUE, WED, THU, FRI, SAT };

enum days today = MON;

or
typedef enum { SUN, MON, TUE } tDay;

tDay today = MON;

S -107

Pointers

• A pointer is a type that points to another type in memory

• Pointers are typed: a pointer to an int is different than a pointer to a long

• An asterisk before a variable name in its declaration makes it a pointer
– i.e.: int *currPointer; (pointer to an integer)

– i.e.: char *names[10]; (an array of char pointers)

• An ampersand (&) gives the address of a pointer
– i.e.: currPtr = &value; (makes currPtr point to value)

• An asterisk can also be used to de-reference a pointer
– i.e.: currValue = *currPtr;

S -108

Pointers (cont)

• Use brackets to avoid confusion:
– ie: *(currPtr++); is very different from (*currPtr)++;

• Using ++ on a pointer will increment the pointer’s address by the size
of the type pointed to

• You can use pointers as if they were arrays (in fact, arrays are
implemented a pointers)

S -109

Command Line Arguments

int main(int argc, char *argv[])

{

. . .

• argc is the number of arguments on the command line, including the
program name

• The array argv contains the actual arguments

• Example:
if(argc == 3)

 printf(“file1:%s file2:%s\n”,

 argv[1], argv[2]);

S -110

Casting

• You can force one type to be interpreted as another type through
casting, ie:
 someSignedInt = (signed int) someUnsignedInt;

• Be careful, as C has no type checking, so you can mess things up if
you’re not careful

• NULL pointer should always be cast, ie:

– (char *) NULL, (int *) NULL, etc.

S -111

Library Functions
 for I/O

S -112

Opening and Closing Files (10.2)

FILE *fp;

fp = fopen(fileName, “r”);

fclose(fp);

• fp is of type “FILE*” (defined in stdio.h)

• fopen returns a pointer (or NULL if unsuccessful) to the specified
fileName with the given permissions:

– “r” read

– “w” write (create new, or wipe out existing fileName)

– “a” append (create new, or append to existing fileName)

– “r+” read and write

S -113

Character-by-Character I/O

fgetc(fp) # returns next character from files referenced by fp

getc(fp) # same as fgetc, but implemented as a macro

getchar() # same as getc(stdin)

• These return the constant “EOF” when the end-of-file is reached

fputc(c, fp) # outputs character c to file referenced by fp

putc(c, fp) # same as fputc, but implemented as a macro

putchar(c) # same as putc(c, stdout)

S -114

Line-by-Line Input

fgets(data, size, fp) # read next line from fp (up to size)

gets(data) # read next line from stdin

• fgets() is preferable to gets()

• Returns address of data array (or NULL if EOF or other error occurred)

• Example:
#define MAX_LENGTH 256

char inputData[MAX_LENGTH];

FILE *fp;

fp = fopen(argv[1], “r”);

fgets(inputData, MAX_LENGTH, fp);

S -115

Line-by-Line Output

fputs(data, fp) # prints string “data” on stream referenced by fp

puts(data) # same as fputs(data, stdout) except a newline

 is automatically appended

S -116

Formatted Output

printf(fmt, args ...)

fprintf(fp, fmt, args ...)

sprintf(string, fmt, args ...)

• Examples:
fprintf(stderr, “Can’t open %s\n”, argv[1]);

sprintf(fileName, “%s”, argv[1]);

• sprintf example above better achieved with “strcpy()” function

• K&R book or man pages for all the details

S -117

Formatted Input

scanf(fmt, *args ...)

fscanf(fp, fmt, *args ...)

sscanf(string, fmt, *args ...)

• Examples:
fscanf(fp, “%s %s”, firstName, lastname);

sscanf(argv[1], “%d %d”, &int1, &int2);

• Returns number of successful args matched … be careful, scanf should
only be used in limited cases where exact format is know in advance

• See K&R book or man pages for all the details

S -118

Binary I/O

fread(buf, size, numItems, fp)

fwrite(buf, size, numItems, fp)

• Examples:
fread(readBuf, sizeof(char), 80, stdin);

fwrite(writeBuf, sizeof(struct utmpx), 1, fp);

• Returns number of successful items read or written

• Other functions:
 rewind(fp); fseek(fp, offset, kind); ftell(fp);

S -119

Library Functions

S -120

Standard Libraries

• Any system call is not part of the C language definition
• Such system calls are defined in libraries, identified with the suffix .a

• Libraries typically contain many .o object files

• To create your own library archive file:
ar crv mylib.a *.o

• Disregard “ranlib” command in Wang, p 311 (no longer needed)

• Look in /usr/lib and /usr/local/lib for most system libraries

• Can list all .o files in an archive use “ar t /usr/lib/libc.a”

• More useful to see all the function names:
/usr/ccs/bin/nm /usr/lib/libc.a | grep FUNC

S -121

Standard Libraries (cont)

• By default, gcc links /usr/lib/libc.a to all executables

• Typing “man 3 intro” will give a list of most of the standard library
functions

• Any other libraries must be explicitly linked by referring to the absolute
pathname of the library, or preferably by using the “-l” gcc switch:

gcc *.o /usr/lib/libm.a -o mathExamples

gcc *.o -lm -o mathExamples

• These .a files are also sometimes referred to as static libraries

• Often you will find for each system .a file a corresponding .so file,
referred to as a shared object (not needed for this course)

• Advantage of shared objects: smaller executable files (library functions
loaded at run time)

S -122

Standard Libraries: Example

#include <stdio.h>

/* #include <math.h> */

int main(void)

{

 printf(“Square root of 2 is %f\n”, sqrt(2));

 return(0);

}

• May get various problems/errors when you compile with:
1) gcc example.c -o example

2) gcc example.c -lm -o example

3) gcc example.c -lm -o example # with math.h included

S -123

Files and Directories

• Disk drives divided into partitions
• Each partition contains a filesystem (type df for a listing of

filesystems mounted on any given computer)

• Filesystems are mounted onto existing filenames (Fig 8.4, p.241)

• Each filesystem has a boot block, a super block, an ilist containing
inodes (short for index nodes), directory blocks, and data blocks

• An inode contains all the information about a file: type, time of last
modification/write/access, uid/gid of creator, size, permissions, etc.

• Directories are just lists of inodes (2 files automatically created with
mkdir: “.” (inode of directory) and “..” (inode of parent directory)

• See figure 8.3 (page 240) for an example.

S -124

Example: argc/argv

#include <stdio.h>

#include <sys/stat.h>

int main(int argc, char *argv[])

{

 if(argc == 2)

 {

 struct stat buf;

 if(stat(argv[1], &buf) != -1)

 printf(“file %s has size %d\n”, argv[1],

 buf.st_size);

 }

 return(0);

}

S -125

Miscellaneous

• fopen/fread/fwrite/fclose, etc. are implemented in terms of
low-level non-standard i/o functions open/read/write/close, etc.

• There are 3 types of buffering:

– fully buffered (or block buffered):

• actual physical i/o takes place only when buffer is filled

– line buffered:
• actual i/o takes place when a newline (\n) is encountered

– unbuffered:

• output as soon as possible

• All files are normally block buffered, except stdout (line buffered only
if it refers to a terminal), and stderr (always unbuffered)

• Can use fflush() to force a buffer to be cleared

S -126

Advanced Library
Functions

S -127

String/Character Handling

• All “str” functions require input strings be terminated with a null byte

• Some of the most common ones:
strlen, strcpy, strcmp, strcat

• strtok used for extracting "tokens" from strings

• memcpy not just for strings!

• strncmp allows limits to be placed on length of strings, other n string
function

• Some function for testing/converting single characters:
isalpha, isdigit, isspace

toupper, tolower

atoi, atol

S -128

Storage Allocation

• Dynamic memory allocation (very important for many C programs):
malloc, calloc, free, realloc

• An (incomplete) example:
#include <stdio.h>

#include <stdlib.h>

struct xx *sp;

sp = (struct xx *) malloc(5 * sizeof(struct xx));

if(sp == (struct xx *) NULL)

{

 fprintf(stderr, “out of storage\n”);

 exit(-1);

}

S -129

Date and Time Functions

• clock_t, clock(), time_t, time()

• Most UNIX time functions have evolved from various sources, and are
sometimes inconsistent, referring to time as one of:

– the number of seconds since Jan 1, 1970 (or Jan 1, 1900)

– the number of clock ticks since Jan 1, 1970 (or Jan 1, 1900)
– the broken down structure “struct tm”

(see /usr/include/time.h)

– the broken down structure “struct timeval”

(see /usr/include/sys/time.h)

• Some are intended for time/date, whereas others are intended for
measuring elapsed time

S -130

Variable Arguments

• An under-used but very powerful feature
• printf() is an example where the number and types of arguments

can differ from invocation to invocation
• /usr/include/stdarg.h provides definitions of:

– a special type named va_list

– three macros to implement variable arguments:
• va_start

• va_end

• va_arg

• Another useful function is “vfprintf”, as shown in the next slide

S -131

Variable Arguments

• A very useful example:
#include <stdarg.h>

void Abort(char *fmt, ...)

{

 va_list args;

 va_start(args, fmt);

 fprintf(stderr, "\n\t");

 vfprintf(stderr, fmt, args);

 fprintf(stderr, "\n\n");

 va_end(args);

 exit(-1);

}

S -132

Environment Interfacing

• Reading environment variables:
getenv(“PATH”);

• Executing a “$SHELL” shell command:

fflush(stdout);

system(“ls -atl”);

• Can also execute a system call and have its output sent to a pipe
instead of stdout: (we’ll talk more about pipes in chapter 12)

FILE *pipe;

pipe = popen(“ls -atl”, “r”);

...

pclose(pipe);

S -133

Processes

S -134

wait and waitpid (11.2)

• Recall from a previous slide: pid_t wait(int *status)

• wait() can: (a) block; (b) return with status; (c) return with error

• If there is more than one child, wait() returns on termination of any
children

• waitpid can be used to wait for a specific child pid

• waitpid also has an option to block or not to block

pid_t waitpid(pid, &status, option);

pid == -1 waits for any child

option == NOHANG non-blocking

option == 0 blocking

waitpid(-1, &status, 0) equivalent to wait(&status)

S -135

example: wait.c

#include <sys/types.h>

#include <sys/wait.h>

void main(void)

{

 int status;

 if(fork() == 0) exit(7); /* normal exit */

 wait(&status); prExit(status);

 if(fork() == 0) abort(); /* generates SIGABRT */

 wait(&status); prExit(status);

 if(fork() == 0) status /= 0; /* generates SIGFPE */

 wait(&status); prExit(status);

}

S -136

prExit.c

#include <sys/types.h>

#include <sys/wait.h>

void prExit(int status)

{

 if(WIFEXITED(status))

 printf("normal termination, exit status = %d\n",

 WEXITSTATUS(status));

 else if(WIFSIGNALED(status))

 printf("abnormal termination, signal number = %d\n",

 WTERMSIG(status));

 else if(WIFSTOPPED(status))

 printf("child stopped, signal number = %d\n",

 WSTOPSIG(status));

}

S -137

exec

• Six versions of exec:

execl(char *pathname, char *arg0, ... , (char*) 0);

execv(char *pathname, char *argv[]);

execle(char *pathname, char *arg0, ..., (char*) 0,

 char *envp[]);

execve(char *pathname, char *argv[],

 char *envp[]);

execlp(char *filename, char *arg0, ..., (char*) 0);

execvp(char *filename, char *argv[]);

S -138

Memory Layout of a C program

text

heap

stack

initialized data

uninitialized data

read from program file by exec

initialized to zero by exec

command-line arguments
and environment variables

low address

high address

•dynamically allocated memory
appears in the heap
•function invocations and local
variables appear in the stack

grow & shrink
as needed

S -139

Miscellaneous: permissions

• Read permissions for a directory and execute permissions for it are not
the same:

– Read: read directory, obtain a list of filenames

– Execute: lets users pass through the directory when it is a
component of a pathname being accessed

• Cannot create a new file in a directory unless user has write
permissions and execute permission in that directory

• To delete an existing file, the user needs write and execute permissions
in the directory containing the file, but does not need read or write
permission for file itself (!!!)

S -140

Miscellaneous: buffering control

int setbuffer(FILE *fp, char *buf, int size)

– specifies that “buf” should be used instead of the default system-
allocated buffer, and sets the buffer size to “size”

– if “buf” is NULL, i/o will be unbuffered

– used after stream is opened, but before it is read or written
int setlinebuf(FILE *fp)

– used to change stdout or stderr to line buffered

– can be called anytime

• A stream can be changed from unbuffered or line buffered to block
buffered by using freopen(). A stream can be changed from block
buffered or line buffered to unbuffered by using freopen()
followed by setbuf() with a buffer argument of NULL.

S -141

Signals

S -142

Motivation for Signals (11.15)

• When a program forks into 2 or more processes, rarely do they execute
independently of each other

• The processes usually require some form of synchronization, and this
is typically handled using signals

• Data usually needs to be passed between processes also, and this is
typically handled using pipes and sockets, which we’ll discuss in detail
in a week or two

• Signals are usually generated by

– machine interrupts

– the program itself, other programs, or the user (e.g. from the
keyboard)

S -143

Introduction

• <sys/signal.h> lists the signal types on cdf. Table 11.5 and
signal(5) give a list of some signal types and their default actions

• When a C program receives a signal, control is immediately passed to
a function called a signal handler

• The signal handler function can execute some C statements and exit in
three different ways:

– return control to the place in the program which was executing
when the signal occurred

– return control to some other point in the program
– terminate the program by calling the exit (or _exit) function

S -144

signal()

• A default action is provided for each kind of signal, such as terminate,
stop, or ignore

• For nearly all signal types, the default action can be changed using the
signal() function. The exceptions are SIGKILL and SIGSTOP

• Usage: signal(int sig, void (*disp)(int))

• For each process, UNIX maintains a table of actions that should be
performed for each kind of signal. The signal() function changes
the table entry for the signal named as the first argument to the value
provided as the second argument

• The second argument can be SIG_IGN (ignore the signal), SIG_DFL
(perform default action), or a pointer to a signal handler function

S -145

signal() example
#include <stdio.h>

#include <stdlib.h>

#include <sys/signal.h>

int i = 0;

void quit(int code) {

 fprintf(stderr, "\nInterrupt (code=%d, i=%d)\n", code, i);

 exit(123);

}

void main(void) {

 if (signal(SIGINT , quit) == -1) exit(1);

 if (signal(SIGTERM, quit) == -1) exit(2);

 if (signal(SIGQUIT, quit) == -1) exit(3);

 if (signal(SIGKILL, quit) == -1) print("Can't touch this!\n);

 for(;;)

 if(i++ % 5000000 == 0) putc('.', stderr);

}

S -146

Checking the return value

• The data type that signal() returns is int

• can also use sigset(), returns
void (*oldhandler)(int)

• It is possible for a child process to accept signals that are being ignored
by the parent, which more than likely is undesirable

• Thus, another method of installing a new signal handler is:
oldhandler = sigset(SIGHUP, SIG_IGN);

if(oldhandler != SIG_IGN)

 sigset(SIGHUP, newhandler);

S -147

Signalling between processes

• One process can send a signal to another process using the
misleadingly named function call

 kill(int pid, int sig)

• This call sends the signal “sig” to the process “pid”

• Signalling between processes can be used for many purposes:

– kill errant processes

– temporarily suspend execution of a process

– make processes aware of the passage of time

– synchronize the actions of processes

S -148

Timer signals

• Three interval timers are maintained for each process:
– SIGALRM (real-time alarm, like a stopwatch)

– SIGVTALRM (virtual-time alarm, measuring CPU time)

– SIGPROF (used for profilers, which we’ll cover later)

• Useful functions to set and get timer info are:
– setitimer(), getitimer()

– alarm() (simpler version: only sets SIGALRM)

– pause() (suspend until next signal arrives)

– sleep() (caused calling process to suspend)

– usleep() (like sleep(), but with finer granularity)

Note: sleep() and usleep() are interruptible by other signals

S -149

Pipes

S -150

Inter-Process Communication (IPC)
• Chapter 12.1-12.3

• Data exchange techniques between processes:

– message passing: files, pipes, sockets

– shared-memory model (not the default … not mentioned in Wang,
but we’ll still cover in this, a few weeks)

• Limitations of files for inter-process data exchange:

– slow!

• Limitations of pipes:

– two processes must be running on the same machine

– two processes communicating must be “related”

• Sockets overcome these limitations (we’ll cover sockets in the next
lecture)

S -151

File Descriptors Revisited

• Section 11.1-2

• Used by low-level I/O
– open(), close(), read(), write()

• declared as an integer
int fd ;

• Not the same as a "file stream", FILE *fp

• streams and file descriptors are related (see following slides)

S -152

Pipes and File Descriptors

• A fork’d child inherits file descriptors from its parent

• It’s possible to alter these using fclose() and fopen():

fclose(stdin);

FILE *fp = fopen(“/tmp/junk”, “r”);

• One could exchange two entries in the fd table by closing and
reopening both streams, but there’s a more efficient way, using dup()
or dup2() (…see next slide)

S -153

dup() and dup2()(12.2)

newFD = dup(oldFD);

if(newFD < 0) { perror(“dup”); exit(1); }

 or, to force the newFD to have a specific number:

returnCode = dup2(oldFD, newFD);

if(returnCode < 0) { perror(“dup2”); exit(1);}

• In both cases, oldFD and newFD now refer to the same file

• For dup2(), if newFD is open, it is first automatically closed

• Note that dup() and dup2() refer to fd’s and not streams

– A useful system call to convert a stream to a fd is
int fileno(FILE *fp);

S -154

pipe() (12.2)

• The pipe() system call creates an internal system buffer and two file
descriptors: one for reading and one for writing

• With a pipe, typically want the stdout of one process to be connected
to the stdin of another process … this is where dup2() becomes
useful (see next slide and figure 12-2 for examples)

• Usage:
int fd[2];

pipe(fd); /* fd[0] for reading; fd[1] for writing */

S -155

pipe()/dup2() example
/* equivalent to “sort < file1 | uniq” */

int fd[2];

FILE *fp = fopen(“file1”, “r”);

dup2(fileno(fp), fileno(stdin));

fclose(fp);

pipe(fd);

if(fork() == 0) {

 dup2(fd[1], fileno(stdout));

 close(fd[0]); close(fd[1]);

 execl(“/usr/bin/sort”, “sort”, (char *) 0); exit(2);

} else {

 dup2(fd[0], fileno(stdin));

 close(fd[0]); close(fd[1]);

 execl(“/usr/bin/uniq”, “uniq”, (char *) 0); exit(3);

}

S -156

popen() and pclose()(12.1)

• popen() simplifies the sequence of:

– generating a pipe

– forking a child process

– duplicating file descriptors

– passing command execution via an exec()

• Usage:
FILE *popen(const char *command,

 const char *type);

• Example:
FILE *pipeFP;

pipeFP = popen(“/usr/bin/ls *.c”, “r”);

S -157

Sockets

S -158

What are sockets? (12.5)

• Sockets are an extension of pipes, with the advantages that the
processes don’t need to be related, or even on the same machine

• A socket is like the end point of a pipe -- in fact, the UNIX kernel
implements pipes as a pair of sockets

• Two (or more) sockets must be connected before they can be used to
transfer data

• Two main categories of socket types … we’ll talk about both:

– the UNIX domain: both processes on same machine

– the INET domain: processes on different machines
• Three main types of sockets: SOCK_STREAM, SOCK_DGRAM, and

SOCK_RAW … we’ll only talk about SOCK_STREAM

S -159

Connection-Oriented Paradigm

Create a socket
socket()

Assign a name to the socket
bind()

Establish a queue for connections
listen()

Extract a connection from the queue
accept()

SERVER

read()

write()

CLIENT

Create a socket
socket()

Initiate a connection
connect()

write()

read()

established

S -160

Example: server.c

• FILE “server.c” … highlights:

socket(AF_UNIX, SOCK_STREAM, 0);

serv_adr.sun_family = AF_UNIX;

strcpy(serv_adr.sun_path, NAME);

bind(orig_sock, &serv_adr, size);

listen(orig_sock, 1);

accept(orig_sock, &clnt_adr, &clnt_len);

read(new_sock, buf, sizeof(buf));

close(sd);

unlink(the_file);

S -161

Example: client.c

• FILE “client.c” … highlights:

socket(AF_UNIX, SOCK_STREAM, 0);

serv_adr.sun_family = AF_UNIX;

strcpy(serv_adr.sun_path, NAME);

connect(orig_sock, &serv_adr, size);

write(new_sock, buf, sizeof(buf));

close(sd);

• Note: server.c and client.c need to be linked with the
libsocket.a library (ie: gcc -lsocket)

S -162

The INET domain

• The main difference is the bind() command … in the UNIX domain,
the socket name is a filename, but in the INET domain, the socket
name is a machine name and port number:

static struct sockaddr_in serv_adr;

memset(&serv_adr, 0, sizeof(serv_adr));

serv_adr.sin_family = AF_INET;

serv_adr.sin_addr.s_addr = htonl(INADDR_ANY);

serv_adr.sin_port = htons(6789);

• Need to open socket with AF_INET instead of AF_UNIX

• Also need to include <netdb.h> and <netinet/in.h>

S -163

The INET domain (cont.)

• The client needs to know the machine name and port of the server
struct hostent *host;

host = gethostbyname(“eddie.cdf”);

• Note: need to link with libnsl.a to resolve gethostbyname()

• see Wang for:
– server.c, client.c UNIX domain example

– iserver.c, iclient.c, INET domain example

S -164

Multiplexed I/O

S -165

Motivation

• Consider a process that reads from multiple sources without knowing
in advance which source will provide some input first

• Three solutions:

– alternate non-blocking reads on input sources (wasteful of CPU)

– fork a process for each input source, and each child can block on
one specific input source (can be hard to coordinate/synchronize)

– use the select() system call … (see next slide)

S -166

select() (Wang, 12.14)

• Usage:
#include <sys/time.h>

#include <sys/types.h>

int select(int nfds,

 fd_set *readfds,

 fd_set *writefds,

 fd_set *exceptfds,

 struct timeval *timeout);

• where the three fd_set variables are file descriptor masks

• fd_set is defined in <sys/select.h>, which is included by
<sys/types.h>

S -167

Details

• The first argument (nfds) represents the number of bits in the masks
that will be processed. Typically, this is 1 + the value of the highest fd

• The three fd_set arguments are bit masks … their manipulation is
discussed on the next slide

• The last argument specifies the amount of time the select call should
wait before completing its action and returning:
– if NULL, select will wait (block) indefinitely until one of the file

descriptors is ready for i/o
– if tv_sec and tv_usec are zero, select will return immediately

– if timeval members are non-zero, the system will wait the specified
time or until a file descriptor is ready for i/o

• select() returns the number or file descriptors ready for i/o

S -168

“FD_” macros

• Useful macros defined in <sys/select.h> to manage the masks:

void FD_ZERO(fd_set &fdset);

void FD_SET(int fd, fd_set &fdset);

void FD_CLR(int fd, fd_set &fdset);

int FD_ISSET(int fd, fd_set &fdset);

• Note that each macro is passed the address of the file descriptor mask

S -169

Example
#include <sys/types.h>

fd_set rmask;

int fd; /* a socket or file descriptor */

FD_ZERO(&rmask);

FD_SET(fd, &rmask); FD_SET(fileno(stdin), &rmask);

for(;;) {

 select(fd+1, &rmask, NULL, NULL, NULL);

 if(FD_ISSET(fileno(stdin, &rmask))

 /* read from stdin */

 if(FD_ISSET(fd, &rmask))

 /* read from descriptor fd */

 FD_SET(fd, &rmask); FD_SET(fileno(stdin), &rmask);

}

S -170

Shared Memory

S -171

Motivation

• Shared memory allows two or more processes to share a given region
of memory -- this is the fastest form of IPC because the data does not
need to be copied between the client and server

• The only trick in using shared memory is synchronizing access to a
given region among multiple processes -- if the server is placing data
into a shared memory region, the client shouldn’t try to access it until
the server is done

• Often, semaphores are used to synchronize shared memory access
(… semaphores will be covered a few lectures from now)

• not covered in Wang, lookup in Stevens (APUE)

S -172

shmget()

• shmget() is used to obtain a shared memory identifier:

 #include <sys/types.h>

 #include <sys/ipc.h>

 #include <sys/shm.h>

 int shmget(key_t key, int size, int flag);

• shmget() returns a shared memory ID if OK, -1 on error

• key is typically the constant “IPC_PRIVATE”, which lets the kernel
choose a new key -- keys are non-negative integer identifiers, but
unlike fds they are system-wide, and their value continually increases
to a maximum value, where it then wraps around to zero

• size is the size of the shared memory segment, in bytes

• flag can be “SHM_R”, “SHM_W”, or “SHM_R|SHM_W”

S -173

shmat()

• Once a shared memory segment has been created, a process attaches it to
its address space by calling shmat():

 void *shmat(int shmid, void *addr, int flag);

• shmat() returns pointer to shared memory segment if OK, -1 on error

• The recommended technique is to set addr and flag to zero, i.e.:

 char *buf = (char *) shmat(shmid, 0, 0);

• The UNIX commands “ipcs” and “ipcrm” are used to list and remove
shared memory segments on the current machine

• The default action is for a shared memory segments to remain in the
system even after the process dies -- a better technique is to use
shmctl() to set up a shared memory segment to remove itself once the
process dies (… see next slide)

S -174

shmctl()

• shmctl() performs various shared memory operations:

 int shmctl(int shmid, int cmd,

 struct shmid_ds *buf);

• cmd can be one of IPC_STAT, IPC_SET, or IPC_RMID:

– IPC_STAT fills the buf data structure (see <sys/shm.h>)

– IPC_SET can change the uid, gid, and mode of the shmid

– IPC_RMID sets up the shared memory segment to be removed
from the system once the last process using the segment terminates
or detached from it — a process detaches a shared memory
segment using shmdt(void *addr), which is similar to
free()

• shmctl() returns 0 if OK, -1 on error

S -175

Shared Memory Example

char *ShareMalloc(int size)

{

 int shmId;

 char *returnPtr;

 if((shmId=shmget(IPC_PRIVATE, size, (SHM_R|SHM_W))) < 0)

 Abort("Failure on shmget {size is %d}\n", size);

 if((returnPtr=(char*) shmat(shmId, 0, 0)) == (void*) -1)

 Abort("Failure on Shared Mem (shmat)");

 shmctl(shmId, IPC_RMID, (struct shmid_ds *) NULL);

 return(returnPtr);

}

S -176

mmap()

• An alternative to shared memory is memory mapped i/o, which maps a
file on disk into a buffer in memory, so that when bytes are fetched from
the buffer the corresponding bytes of the file are read

• One advantage is that the contents of files are non-volatile

• Usage:
caddr_t mmap(caddr_t addr, size_t len, int

 prot, int flag, int filedes, off_t off);

– addr and off should be set to zero,

– len is the number of bytes to allocate

– prot is the file protection, typically (PROT_READ|PROT_WRITE)

– flag should be set to MAP_SHARED to emulate shared memory

– filedes is a file descriptor that should be opened previously

S -177

Memory Mapped I/O Example
char *ShareMalloc(int size)

{

 int fd;

 char *returnPtr;

 if((fd = open("/tmp/mmap", O_CREAT | O_RDWR, 0666)) < 0)

 Abort("Failure on open");

 if(lseek(fd, size-1, SEEK_SET) == -1)

 Abort("Failure on lseek");

 if(write(fd, "", 1) != 1)

 Abort("Failure on write");

 if((returnPtr = (char *) mmap(0, size, PROT_READ|PROT_WRITE,

 MAP_SHARED, fd, 0)) == (caddr_t) -1)

 Abort("Failure on mmap");

 return(returnPtr);

}

S -178

Semaphores

S -179

Motivation

• Programs that manage shared resources must execute portions of code
called critical sections in a mutually exclusive manner. A common
method of protecting critical sections is to use semaphores

• Code that modifies shared data usually has the following parts:

 Entry Section: The code that requests permission to modify

 the shared data.

 Critical Section: The code that modifies the shared variable.

 Exit Section: The code that releases access to the shared data.

Remainder Section: The remaining code.

S -180

The Critical Section Problem

• The critical section problem refers to the problem of executing critical
sections in a fair, symmetric manner. Solutions to the critical section
problem must satisfy each of the following:

 Mutual Exclusion: At most one process is in its critical section at

 any time.

 Progress: If no process is executing its critical section, a

 process that wishes to enter can get in.

 Bounded Waiting: No process is postponed indefinitely.

• An atomic operation is an operation that, once started, completes in a
logical indivisible way. Most solutions to the critical section problem
rely on the existence of certain atomic operations

S -181

Semaphores

• A semaphore is an integer variable with two atomic operations: wait and
signal. Other names for wait are down, P, and lock. Other names for
signal are up, V, unlock, and post.

• A process that executes a wait on a semaphore variable S cannot

proceed until the value of S is positive. It then decrements the value of

S. The signal operation increments the value of the semaphore variable.

• Some (flawed) pseudocode:
 void wait(int *s) void signal(int *s)

 { {

 while(*s <= 0) ; (*s)++;

 (*s)--; }

 }

S -182

Semaphores (cont.)

• Three problems with the previous slide’s wait() and signal():

– busy waiting is inefficient

– doesn’t guarantee bounded waiting
– “++” and “--” operations aren’t necessarily atomic!

• Solution: use system calls semget() and semop() (… see next slide)

• The following pseudocode protects a critical section:
 wait(&s);

 /* critical section */

 signal(&s);

 /* remainder section */

• What happens if S is initially 0? What happens if S is initially 8?

S -183

semget()

• Usage:
 #include <sys/types.h>

 #include <sys/ipc.h>

 #include <sys/sem.h>

 #include <sys/stat.h>

 int semget(key_t key, int nsems, int semflg);

• Creates a semaphore set and initializes each element to zero

• Example:
 int semID = semget(IPC_PRIVATE, 1,

 S_IRUSR | S_IWUSR);

• Like shared memory, icps and ipcrm can list and remove semaphores

S -184

semop()

• Usage: int semop(int semid, struct sembuf *sops,

 int nsops);

• Increment, decrement, or test semaphores elements for a zero value.
• From <sys/sem.h>:

 sops->sem_num, sops->sem_op, sops->sem_flg;

• If sem_op is positive, semop() adds value to semaphore element and
awakens processes waiting for the element to increase

• if sem_op is negative, semop() adds the value to the semaphore
element and if < 0, semop() sets to 0 and blocks until it increases

• if sem_op is zero and the semaphore element value is not zero,
semop() blocks the calling process until the value becomes zero

• if semop() is interrupted by a signal, it returns -1 with errno = EINTR

S -185

Example
struct sembuf semWait[1] = { 0, -1, 0 },

 semSignal[1] = { 0, 1, 0 };

int semID;

semop(semID, semSignal, 1); /* init to 1 */

while((semop(semID, semWait, 1) == -1) &&

 (errno == EINTR))

 ;

{ /* critical section */ }

while((semop(semID, semSignal, 1) == -1) &&

 (errno == EINTR))

 ;

S -186

Posix Threads

S -187

Thread Concepts

• Threads are "lightweight processes"
– 10 to 100 times faster than fork()

• Threads share:

– process instructions, most data, file descriptors, signal
handlers/dispositions, current working directory, user/group Ids

• Each thread has its own:

– thread ID, set of registers (incl. Program counter and stack
pointer), stack (local vars, return addresses), errno, signal mask,
priority

• Posix threads will (we think) be the new UNIX thread standard

S -188

Creating a PThread

#include <pthread.h>

int pthread_create(pthread_t *tid, pthread_attr_t *attr,
 void *(*func)(void *), void *arg)

• tid is unique within a process, returned by function

• attr

– sets priority, initial stack size, daemon status
– can specify as NULL

• func

– function to call to start thread
– accepts one void * argument, returns one void *

• arg is the argument to pass to func

S -189

Creating a Pthread [cont'd]

• pthread_create() returns 0 if successful, a +ve error code if not

• does not set errno, but returns compatible codes

• can use strerror() to print error messages

Thread Termination
#include <pthread.h>

int pthread_join(pthread_t tid, void **status)

• tid

– the thread ID of the thread to wait for
– cannot wait for any thread (cf. wait())

S -190

Thread Termination [cont'd]

• status, if not NULL, returns the void * returned by the thread when
it terminates

• a thread can terminate by
– returning from func()

– the main() function exiting

– pthread_exit()

#include <pthread.h>

void pthread_exit(void *status);

• a second way to exit, returns status explicitly
• status must not point to an object local to thread, as these disappear

when the thread terminates

S -191

"Detaching" Threads

#include <pthread.h>

int pthread_detach(pthread_t tid);

• threads are either joinable or detachable

• if a thread is detached, its termination cannot be tracked with
pthread_join() - it becomes a daemon thread

#include <pthread.h>

pthread_t pthread_self(void);

• returns the thread ID of the thread which calls it
• often see pthread_detach(pthread_self());

S -192

Passing Arguments to Threads

pthread_t thread_ID;

int fd, result ;

result = pthread_create(&thread_ID,

(pthread_attr_t *)NULL, myThreadFcn, (void *)&fd);

if (result != 0)

 printf("Error: %s\n", strerror(result));

• we can pass any variable (including a structure or array) to our thread
function; assumes thread function knows what type it is

S -193

Thread-Safe Functions

• Not all functions can be called from threads (e.g. strtok())

– many use global/static variables

– new versions of UNIX have thread-safe replacements, like
strtok_r()

• Safe:
– ctime_r(), gmtime_r(), localtime_r(),
rand_r(), strtok_r()

• Not Safe:
– ctime(), gmtime(), localtime(), rand(),
strtok(), gethostXXX(), inet_toa()

• could use semaphores to protect access

S -194

PThread Semaphores

#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t *name,

 const pthread_mutexattr_t *attr);

int pthread_mutex_destroy(pthread_mutex_t *name);

int pthread_mutex_lock(pthread_mutex_t *name);

int pthread_mutex_trylock(pthread_mutex_t *name);

int pthread_mutex_unlock(pthread_mutex_t *name);

• pthread semaphores are easier to use than semget() and semop()

• all mutexes must be global

• only the thread that locks a mutex can unlock it

S -195

PThread Semaphores [cont'd]
pthread_mutex_t myMutex ;

int status ;

status = pthread_mutex_init(&myMutex, NULL) ;

if (status != 0)

 printf("Error: %s\n", strerror(status));

pthread_mutex_lock(&myMutex);

/* critical section here */

pthread_mutex_unlock(&myMutex);

status = pthread_mutex_destroy(&myMutex);

if (status != 0)

 printf("Error: %s\n", strerror(status));

S -196

Concurrency Concepts

S -197

Non-determinism

• A process is deterministic when it always produces the same result
when presented with the same data; otherwise a process is called

 non-deterministic

j = 10

print j

j = 100

exit

• Evaluation proceeds non-deterministically in one of two ways,
producing an output of 10 or 100

• Race conditions lead to non-determinism, and are generally undesirable

S -198

Deadlocks

• A concurrent program is in deadlock if all processes are waiting for
some event that will never occur

• Typical deadlock pattern:

Process 1 is holding resource X, waiting for Y

Process 2 is holding resource Y, waiting for X

Process 1 will not get Y until Process 2 releases it

Process 2 will not release Y until it gets X,

 which Process 1 is holding, waiting for …

S -199

Dining Philosophers

• N philosophers are seated
in a circle, one chopstick
between each adjacent pair

• Each philosopher needs two
chopsticks to eat, a left
chopstick and a right
chopstick

• A typical philosopher
process alternates between
eating and thinking
(see next slide)

S -200

Philosopher Process

loop

 <get one chopstick>

 <get other chopstick>

 <eat>

 <release one chopstick>

 <release other chopstick>

 <think>

endloop

S -201

Deadlock Example

• For N=2, call philosophers P1 and P2, and chopsticks C1 and C2

• Deadlocking sequence:

P1 requests; gets C1

P2 requests; gets C2

P1 requests; WAITS for C2

P2 requests; WAITS for C1

** DEADLOCK **

• Can avoid deadlock if the philosopher processes request both chopsticks
at once, and then they get both or wait until both are available

S -202

Comments on Deadlock
• In practice, deadlocks can arise when waiting for some reusable

resources. For example, an operating system may be handling several
executing jobs, none of which has enough room to finish (and free up
memory for the others)

• Operating systems may detect/avoid deadlocks by:

– checking continuously on requests for resources

– refusing to allocate resources if allocation would lead to a deadlock

– terminating a process that is responsible for deadlock

• One can have a process that sits and watches, and can break a deadlock
if necessary. This process may be invoked:

– on a timed interrupt basis

– when a process wants to queue for a resource

– when deadlock is suspected (i.e.: CPU utilization has dropped to 0)

S -203

Indefinite Postponement

• Indefinite postponement occurs when a process is blocked waiting for
an even that can, but will not occur in some future execution sequence

• This may arise because other processes are “ganging up” on a process
to “starve” it

• During indefinite postponement, the overall system does not grind to a
halt, but treats some of its processes unfairly

• Indefinite postponement can be avoided by having priority queues
which serve concurrent processes on a first-come, first-served basis

• UNIX semaphores do this, using a FIFO (first-in, first-out) queue for
all requests

S -204

Dekker's Algorithm

/* other, me are threadID's with values 0, 1 */
int turn ;
int need[2] = { FALSE, FALSE };

void wait()
{
 need(me) = TRUE ; turn = other ;
 while (need[other] && (turn != me));
}

void signal()
{
 need(me) = FALSE ;
}

S -205

Project Management

S -206

Dependencies

include.h

proto.h

globals.h

xserver.c

iserver.c

.

.

.
<stdio.h>

.

.

S -207

Makefile
OBJS = iserver.o xserver.o

CC = gcc

CFLAGS = -g

.c.o:

 $(CC) $(CFLAGS) -c $<

IServer: $(OBJS)

 $(CC) $(CFLAGS) $(OBJS) -o $@

iserver.o: include.h globals.h proto.h

xserver.o: include.h globals.h proto.h

clean:

 rm -f *.o IServer

S -208

Makefile Macros

<NAME> = <STRING>
${<NAME>}

• used to simplify makefiles
• example: CFLAGS = -g -DDEBUG -DANSI, then can use

${CFLAGS} in all targets

• can omit {} if <NAME> is only one letter

• Special macros:
– $@ evaluates to current target

– $? evaluates to a list of prerequisites that are newer than the
current target

e.g. libops : interact.o sched.o gen.o
 ar r $@ $?

S -209

Suffix Rules

• Unix has many "standard" suffixes (.c .f .o .s .a .so)

• can specify the same make rule for all files with a given suffix,
.SUFFIXES : .o .c .s
.c.o :
${CC} ${CFLAGS} -c $<

.s.o :
${AS} ${ASFLAGS} -o $@ $<

• the macro $< is just like $?, except only for suffix rules

• $* evaluates to a filename (without suffix) of the prerequisite

cp $< $*.tmp

if main.c is the prerequisite, then this evaluates to

cp main.c main.tmp

S -210

Multiply-defined globals

#include <stdio.h>
#include "proto.h"
#include "globals.h"

#include "include.h"

void main(void)
{
 X_ServerPid++;
 PrintPid();
}

#include "include.h"
void PrintPid()
{
 printf("X_ServerPid:%d\n",
 X_ServerPid);
}

void PrintPid();

int X_ServerPid = 14;

iserver.c:

xserver.c:

include.h:

proto.h:

globals.h:

S -211

Two Solutions

#ifdef _MAIN
 int X_ServerPid = 14;
#else
 extern X_ServerPid;
#endif

globals.h:
#ifdef _MAIN
 #define EXTERN
#else
 #define EXTERN extern
#endif

EXTERN X_ServerPid;
/* set in Init()*/

globals.h:

for initialized globals: for uninitialized globals:

#define _MAIN
#include "include.h"

iserver.c:

S -212

Miscellanea

S -213

gzip, compress

• Usage: gzip [filename]: compress specified filename

 gunzip [filename]: uncompress specified filename

• Examples:
gzip file1 creates file1.gz

gunzip <file2.gz | more leaves file2.gz intact

cat file3 | gzip > newFile.gz leaves file3 intact

• compress behaves like gzip, using a different (less efficient)
compression algorithm is used (resulting files have .Z extension).

• Similarly, uncompress behaves like gunzip

S -214

tar

• Traditionally, tar (short for Tape ARchive) was used for backups to
tape drives

• It’s also useful to create archive files on disk.

• Example: creating an archive of a directory structure:
tar fcvp dir1.tar dir1

• Example: uncompressing and extracting a tar file:
gunzip < dir2.tar.gz | tar fxvp -

• Example: copying a directory structure:
tar fcvp - dir1 | (cd newloc; tar fxvp -)

• Advantage over “cp -rp”: preserves symbolic links

S -215

nice, nohup

• nice (csh built-in) sets the priority level of a command. The higher
the priority number, the slower it will run.

• Usage: nice [+ n | - n] command

• Example:
nice +20 emacs &

nice -20 importantJob only root can give negative value

• nohup (csh built-in) makes a process immune to hangup conditions

• Usage: nohup command

• Example:
nohup bigJob &

• in ~/.logout: /usr/bin/kill -HUP -1 >& /dev/null

S -216

Named pipes: mknod()
#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int main() {

 unlink(“namedPipe”);

 mknod(“namedPipe”, S_IFIFO, 0);

 chmod(“namedPipe”, 0600);

 if(fork() == 0) {

 int fd = open(“namedPipe”, O_WRONLY);

 dup2(fd, fileno(stdout)); close(fd);

 execlp("ruptime", "ruptime", (char *) 0);

 } else {

 int fd = open(“namedPipe”, O_RDONLY);

 dup2(fd, fileno(stdin)); close(fd);

 execlp("sort", "sort", "-r", (char *) 0);

 }

}

S -217

vfork()

• The typical fork()/exec() sequence is inefficient because
fork() creates a copy of the data, heap, and stack area of the original
process, which is then immediately discarded when exec() is called.

• vfork()is intended to create a new process when the purpose of the
new process is to exec() a new program. vfork() has the same
calling sequence and the same return values as fork().

• vfork() creates the new process, just like fork(), without fully
copying the address space of the parent into the child, since the child
won’t reference that address space -- the child just calls exec() right
after the vfork().

• Another difference between vfork() and fork() is that vfork()
guarantees that the child runs first, until the child calls exec() or
exit().

S -218

system()

• It is sometimes convenient to execute a command string from within a
program.

• For example, to put a time and date stamp into a certain file, one could:
– use time(), and ctime() to get and format the time, then open

a file for writing and write the resulting string.
– use system(“date > file”); (much simpler)

• system() is typically implemented by calling fork(), exec(),
and waitpid()

S -219

lint

• lint is a useful utility that checks programs more thoroughly that
gcc or other compilers

• Usage:
lint file1 [file2] ...

% cat main.c

#include <stdio.h>
void main()
{
 int i;
 printf("Hello\n");
}

% lint main.c

variable unused in function:
 (5) i in main

function returns value
which is always ignored:
 printf

