
1

S -164

Multiplexed I/O

S -165

Motivation

• Consider a process that reads from multiple sources without knowing
in advance which source will provide some input first

• Three solutions:

– alternate non-blocking reads on input sources (wasteful of CPU)

– fork a process for each input source, and each child can block on
one specific input source (can be hard to coordinate/synchronize)

– use the select() system call … (see next slide)

S -166

select() (Wang, 12.14)

• Usage:
#include <sys/time.h>

#include <sys/types.h>

int select(int nfds,

 fd_set *readfds,

 fd_set *writefds,

 fd_set *exceptfds,

 struct timeval *timeout);

• where the three fd_set variables are file descriptor masks

• fd_set is defined in <sys/select.h>, which is included by
<sys/types.h>

S -167

Details

• The first argument (nfds) represents the number of bits in the masks
that will be processed. Typically, this is 1 + the value of the highest fd

• The three fd_set arguments are bit masks … their manipulation is
discussed on the next slide

• The last argument specifies the amount of time the select call should
wait before completing its action and returning:

– if NULL, select will wait (block) indefinitely until one of the file
descriptors is ready for i/o

– if tv_sec and tv_usec are zero, select will return immediately

– if timeval members are non-zero, the system will wait the specified
time or until a file descriptor is ready for i/o

• select() returns the number or file descriptors ready for i/o

S -168

“FD_” macros

• Useful macros defined in <sys/select.h> to manage the masks:

void FD_ZERO(fd_set &fdset);

void FD_SET(int fd, fd_set &fdset);

void FD_CLR(int fd, fd_set &fdset);

int FD_ISSET(int fd, fd_set &fdset);

• Note that each macro is passed the address of the file descriptor mask

S -169

Example
#include <sys/types.h>

fd_set rmask;

int fd; /* a socket or file descriptor */

FD_ZERO(&rmask);

FD_SET(fd, &rmask); FD_SET(fileno(stdin), &rmask);

for(;;) {

 select(fd+1, &rmask, NULL, NULL, NULL);

 if(FD_ISSET(fileno(stdin, &rmask))

 /* read from stdin */

 if(FD_ISSET(fd, &rmask))

 /* read from descriptor fd */

 FD_SET(fd, &rmask); FD_SET(fileno(stdin), &rmask);

}

