Pipes

| nter-Process Communication (IPC)

Chapter 12.1-12.3
Data exchange techniques between processes:
— message passing: files, pipes, sockets
— shared-memory model (not the default ... not mentioned in Wang,
but we'll still cover inthis, afew weeks)
Limitations of files for inter-process data exchange:
— slow!
Limitations of pipes:.
— two processes must be running on the same machine
— two processes communicating must be “related”

Sockets overcome these limitations (we' |l cover sockets in the next
lecture)

S-150

File Descriptors Revisited

Section 11.1-2
Used by low-level 1/0
— open(), close(), read(), wite()

declared as an integer
Int fd ;

Not the sasmeasa"filestream”, FI LE *fp
streams and file descriptors are related (see following slides)

S-151

Pipes and File Descriptors

A fork’d child inherits file descriptors from its parent

It's possible to alter theseusing f cl ose() and f open():
fclose(stdin);

FILE *fp = fopen(“/tnp/junk”, “r”);

One could exchange two entries in the fd table by closing and
reopening both streams, but there' s a more efficient way, using dup()
or dup2() (...seenext dide)

S-152

dup() anddup2() (12.2)

newFD = dup(ol dFD);
1 f(newrD < 0) { perror(“dup”); exit(1l); }

or, to force the newFD to have a specific number:

returnCode = dup2(ol dFD, newFD);
| f(returnCode < 0) { perror(“dup2’); exit(1);}

* Inboth cases, ol dFD and newD now refer to the samefile
 Fordup2(),if newrFDisopen, it isfirst automatically closed
 Notethat dup() anddup?2() refer tofd sand not streams

— A useful system call to convert astreamto afdis
Int fileno(FILE *fp);

S-153

pi pe() (12.2)

The pi pe() system call creates an internal system buffer and two file
descriptors: one for reading and one for writing

With a pipe, typically want the stdout of one process to be connected
to the stdin of another process ... thisiswhere dup2() becomes

useful (see next dlide and figure 12-2 for examples)

Usage:
Int fd[2];

pipe(fd); /*fd[O] forreading; fd[1] for writing */

S-154

pl pe() /dup2() example

/* equivalent to “sort < filel | uniq” */
int fd[2];
FILE *fp = fopen(“filel”, “r”);
dup2(fileno(fp), fileno(stdin));
fclose(fp);
pi pe(fd);
if(fork() == 0) {
dup2(fd[1], fileno(stdout));
close(fd[O]); «close(fd[1]);
execl (“/usr/bin/sort”, “sort”, (char *) 0); exit(2);
} else {
dup2(fd[O], fileno(stdin));
close(fd[O]); «close(fd[1]);
execl (“/usr/bin/uniq”, “uniq’, (char *) 0); exit(3);

S-155

popen() and pcl ose() (12.1)

 popen() simplifiesthe sequence of:
— generating a pipe
— forking achild process
— duplicating file descriptors
— passing command execution via an exec()

e Usage:
FI LE *popen(const char *conmmand,

const char *type);
 Example:
FI LE *pi peFP;
pi peFP = popen(“/usr/bin/ls *.c”, “r”);

S-156

Sockets

What are sockets? (12.5)

Sockets are an extension of pipes, with the advantages that the
processes don't need to be related, or even on the same machine

A socket is like the end point of a pipe -- in fact, the UNIX kernel
Implements pipes as a pair of sockets

Two (or more) sockets must be connected before they can be used to
transfer data

Two main categories of socket types ... we'll talk about both:
— the UNIX domain: both processes on same machine

— the INET domain: processes on different machines

Three main types of sockets: SOCK STREAM SOCK DGRAM and
SOCK_RAW ... we'll only talk about SOCK STREAM

S-158

Connection-Oriented Paradigm

SERVER CLIENT
Create a socket Create a socket
socket () socket ()

7 7

Assign a name to the socket
bi nd() @

Establish a queue for connections

|1 sten()
Extract a connection from the queue Initiate a connection

accept () <:] bliched [:> connect ()

S-159

Example: server.c

« FILE“server.c” ... highlights:

socket (AF_UNI X, SOCK STREAM 0);
serv_adr.sun _famly = AF_UN X;

strcpy(serv_adr.sun_path, NAME);

bi nd(orig sock, &serv_adr, size);

|1 sten(orig sock, 1);

accept(orig_sock, &clnt_adr, &clnt_len);

read(new sock, buf, sizeof(buf));

cl ose(sd);
unlink(the file);

S-160

Example: client.c

« FILE“client.c” ... highlights:

socket (AF_UNI X, SOCK STREAM 0);
serv_adr.sun _famly = AF_UN X;
strcpy(serv_adr.sun_path, NAME);

connect (orig sock, &serv_adr, size);
write(new sock, buf, sizeof(buf));
cl ose(sd);

e Note:server.c and cli ent.c needto belinked with the
| 1 bsocket . a library (iecgcc -1 socket)

S-161

The INET domain

The main differenceisthe bi nd() command ... inthe UNIX domain,
the socket nameis afilename, but in the INET domain, the socket
name is a machine name and port number:

static struct sockaddr in serv_adr;
nmenset (&serv_adr, 0, sizeof(serv_adr));

serv_adr.sin famly = AF_I NET;
serv_adr.sin_addr.s _addr = htonl (1 NADDR_ANY) ;
serv_adr.sin_port = htons(6789);

Need to open socket with AF_| NET instead of AF_UNI X
Also need to include<net db. h> and <neti net/i1 n. h>

S-162

The INET domain (cont.)

* Theclient needs to know the machine name and port of the server
struct hostent *host;

host = get host bynane(“eddie.cdf”);
 Note needtolink with| i bnsl . a toresolve get host bynane()

e seecoursewebsitefor:
— server.c, client.c UNIX domain example
— server2.c, client?2.c, INET domain example

S-163

