
1

S -149

Pipes

S -150

Inter-Process Communication (IPC)
• Chapter 12.1-12.3

• Data exchange techniques between processes:

– message passing: files, pipes, sockets

– shared-memory model (not the default … not mentioned in Wang,
but we’ll still cover in this, a few weeks)

• Limitations of files for inter-process data exchange:

– slow!

• Limitations of pipes:

– two processes must be running on the same machine

– two processes communicating must be “related”

• Sockets overcome these limitations (we’ll cover sockets in the next
lecture)

S -151

File Descriptors Revisited

• Section 11.1-2

• Used by low-level I/O
– open(), close(), read(), write()

• declared as an integer
int fd ;

• Not the same as a "file stream", FILE *fp

• streams and file descriptors are related (see following slides)

S -152

Pipes and File Descriptors

• A fork’d child inherits file descriptors from its parent

• It’s possible to alter these using fclose() and fopen():

fclose(stdin);

FILE *fp = fopen(“/tmp/junk”, “r”);

• One could exchange two entries in the fd table by closing and
reopening both streams, but there’s a more efficient way, using dup()
or dup2() (…see next slide)

S -153

dup() and dup2()(12.2)

newFD = dup(oldFD);

if(newFD < 0) { perror(“dup”); exit(1); }

 or, to force the newFD to have a specific number:

returnCode = dup2(oldFD, newFD);

if(returnCode < 0) { perror(“dup2”); exit(1);}

• In both cases, oldFD and newFD now refer to the same file

• For dup2(), if newFD is open, it is first automatically closed

• Note that dup() and dup2() refer to fd’s and not streams

– A useful system call to convert a stream to a fd is
int fileno(FILE *fp);

S -154

pipe() (12.2)

• The pipe() system call creates an internal system buffer and two file
descriptors: one for reading and one for writing

• With a pipe, typically want the stdout of one process to be connected
to the stdin of another process … this is where dup2() becomes
useful (see next slide and figure 12-2 for examples)

• Usage:
int fd[2];

pipe(fd); /* fd[0] for reading; fd[1] for writing */

2

S -155

pipe()/dup2() example
/* equivalent to “sort < file1 | uniq” */

int fd[2];

FILE *fp = fopen(“file1”, “r”);

dup2(fileno(fp), fileno(stdin));

fclose(fp);

pipe(fd);

if(fork() == 0) {

 dup2(fd[1], fileno(stdout));

 close(fd[0]); close(fd[1]);

 execl(“/usr/bin/sort”, “sort”, (char *) 0); exit(2);

} else {

 dup2(fd[0], fileno(stdin));

 close(fd[0]); close(fd[1]);

 execl(“/usr/bin/uniq”, “uniq”, (char *) 0); exit(3);

}

S -156

popen() and pclose()(12.1)

• popen() simplifies the sequence of:

– generating a pipe

– forking a child process

– duplicating file descriptors

– passing command execution via an exec()

• Usage:
FILE *popen(const char *command,

 const char *type);

• Example:
FILE *pipeFP;

pipeFP = popen(“/usr/bin/ls *.c”, “r”);

S -157

Sockets

S -158

What are sockets? (12.5)

• Sockets are an extension of pipes, with the advantages that the
processes don’t need to be related, or even on the same machine

• A socket is like the end point of a pipe -- in fact, the UNIX kernel
implements pipes as a pair of sockets

• Two (or more) sockets must be connected before they can be used to
transfer data

• Two main categories of socket types … we’ll talk about both:

– the UNIX domain: both processes on same machine

– the INET domain: processes on different machines

• Three main types of sockets: SOCK_STREAM, SOCK_DGRAM, and
SOCK_RAW … we’ll only talk about SOCK_STREAM

S -159

Connection-Oriented Paradigm

Create a socket
socket()

Assign a name to the socket
bind()

Establish a queue for connections
listen()

Extract a connection from the queue
accept()

SERVER

read()

write()

CLIENT

Create a socket
socket()

Initiate a connection
connect()

write()

read()

established

S -160

Example: server.c

• FILE “server.c” … highlights:

socket(AF_UNIX, SOCK_STREAM, 0);

serv_adr.sun_family = AF_UNIX;

strcpy(serv_adr.sun_path, NAME);

bind(orig_sock, &serv_adr, size);

listen(orig_sock, 1);

accept(orig_sock, &clnt_adr, &clnt_len);

read(new_sock, buf, sizeof(buf));

close(sd);

unlink(the_file);

3

S -161

Example: client.c

• FILE “client.c” … highlights:

socket(AF_UNIX, SOCK_STREAM, 0);

serv_adr.sun_family = AF_UNIX;

strcpy(serv_adr.sun_path, NAME);

connect(orig_sock, &serv_adr, size);

write(new_sock, buf, sizeof(buf));

close(sd);

• Note: server.c and client.c need to be linked with the
libsocket.a library (ie: gcc -lsocket)

S -162

The INET domain

• The main difference is the bind() command … in the UNIX domain,
the socket name is a filename, but in the INET domain, the socket
name is a machine name and port number:

static struct sockaddr_in serv_adr;

memset(&serv_adr, 0, sizeof(serv_adr));

serv_adr.sin_family = AF_INET;

serv_adr.sin_addr.s_addr = htonl(INADDR_ANY);

serv_adr.sin_port = htons(6789);

• Need to open socket with AF_INET instead of AF_UNIX

• Also need to include <netdb.h> and <netinet/in.h>

S -163

The INET domain (cont.)

• The client needs to know the machine name and port of the server
struct hostent *host;

host = gethostbyname(“eddie.cdf”);

• Note: need to link with libnsl.a to resolve gethostbyname()

• see course website for:

– server.c, client.c UNIX domain example

– server2.c, client2.c, INET domain example

