Pipes

S-149

I nter-Process Communication (1PC)

Chapter 12.1-12.3
Data exchange techniques between processes:
— message passing: files, pipes, sockets
— shared-memory model (not the default ... not mentioned in Wang,
but we'll till cover in this, afew weeks)

Limitations of files for inter-process data exchange:
— slow!

Limitations of pipes:
— two processes must be running on the same machine
— two processes communicating must be “related”

Sockets overcome these limitations (we'll cover sockets in the next
lecture)

5-150

File Descriptors Revisited

e Section11.1-2
* Used by low-level I/0

— open(), close(), read(), wite()

declared as an integer
int fd ;

Not the same as a "file stream", FI LE *f p
streams and file descriptors are related (see following slides)

S-151

Pipes and File Descriptors

A fork’d child inherits file descriptors from its parent

It'spossible to alter these using f cl ose() andf open():
fclose(stdin);
FILE *fp = fopen(“/tnp/junk”, “r”);

One could exchange two entries in the fd table by closing and
reopening both streams, but there’s amore efficient way, using dup()
ordup2() (...seenext slide)

s-152

dup() and dup2() (12.2)

newFD = dup(ol dFD);
if(newFD < 0) { perror(“dup”); exit(1); }

or, to force the newFD to have a specific number:
returnCode = dup2(ol dFD, newFD);
if(returnCode < 0) { perror(“dup2”); exit(1);}

In both cases, ol dFD and newfD now refer to the samefile
For dup2() , if newFDis open, it is first automatically closed
Note that dup() anddup2() refer to fd's and not streams
— A useful system call to convert astreamto afdis

int fileno(FILE *f

5-153

pi pe() (12.2)

Thepi pe() system call creates an internal system buffer and two file
descriptors: one for reading and one for writing

With apipe, typically want the stdout of one process to be connected
to the stdin of another process ... thisiswheredup2() becomes
useful (see next slide and figure 12-2 for examples)

Usage:
int fd[2];

pipe(fd); /*fd[0] forreading; f d[1] for writing*/

pi pe() /dup2() example

/* equivalent to “sort < filel | unig® */
int fd[2];
FILE *fp = fopen(“filel”, “r”);
dup2(fileno(fp), fileno(stdin));
fclose(fp);
pipe(fd);
if(fork() ==0) {
dup2(fd[1], fileno(stdout));
close(fd[0]); close(fd[1]);
execl (“/usr/bin/sort”, “sort”, (char *) 0); exit(2);
} else {
dup2(fd[0], fileno(stdin));
close(fd[0]); close(fd[1]);
execl (“/usr/bin/uniqg", “uniqg’, (char *) 0); exit(3);

5-155

popen() and pcl ose() (12.1)

popen() simplifiesthe sequence of:
— generating apipe
— forking achild process
— duplicating file descriptors
— passing command execution via an exec()
Usage:
FI LE *popen(const char *command,
const char *type);
Example:
FI LE *pi peFP;
pi peFP = popen(“/usr/bin/ls *.c", “r”);

5-156

Sockets

S-157

What are sockets? (12.5)

Sockets are an extension of pipes, with the advantages that the
processes don’t need to be related, or even on the same machine
A socket is like the end point of a pipe -- in fact, the UNIX kernel
implements pipes as a pair of sockets
Two (or more) sockets must be connected before they can be used to
transfer data
Two main categories of socket types ... we'll talk about both:

— the UNIX domain: both processes on same machine

— theINET domain: processes on different machines

Three main types of sockets: SOCK_STREAM SOCK_DGRAM and
SOCK_RAW ... we'll only talk about SOCK_STREAM

5-158

Connection-Oriented Paradigm

SERVER CLIENT
Create a socket Create a socket
socket () socket ()

Assign aname to the socket
bi nd()

NV
N

Extract a connection from the queue Initiate a connection

accept () <] aseblished connect ()
o o

read() <] write()

write()[:> read()

Establish a queue for connections
listen()

5-159

Example: server.c

FILE“server.c” ... highlights:

socket (AF_UNI X, SOCK_STREAM 0);
serv_adr.sun_famly = AF_UN X;

strcpy(serv_adr.sun_path, NAME);

bind(orig_sock, &serv_adr, size);
listen(orig_sock, 1);

accept (orig_sock, &clnt_adr, &clnt_len);

read(new_sock, buf, sizeof(buf));

close(sd);
unlink(the_file);

5-160

Example: client.c

FILE“client.c” ... highlights:

socket (AF_UNI X, SOCK_STREAM 0);
serv_adr.sun_famly = AF_UN X;
strcpy(serv_adr.sun_path, NAME);

connect (ori g_sock, &serv_adr, size);
write(new_sock, buf, sizeof(buf));
close(sd);

Note: server. ¢ and cl i ent. c needto belinked with the
l'i bsocket . a library (ie: gcc -1 socket)

S-161

The INET domain

The main differenceisthebi nd() command ... inthe UNIX domain,
the socket name is a filename, but in the INET domain, the socket
name is amachine name and port number:

static struct sockaddr_in serv_adr;

nmenset (&serv_adr, 0, sizeof(serv_adr));
serv_adr.sin_famly = AF_I NET;
serv_adr.sin_addr.s_addr = htonl (1 NADDR_ANY) ;
serv_adr. sin_port = htons(6789);

Need to open socket with AF_I NET instead of AF_UNI X
Alsoneedtoinclude<net db. h> and <netinet/in. h>

S-162

The INET domain (cont.)

The client needs to know the machine name and port of the server
struct hostent *host;
host = gethostbynane(“eddie.cdf”);

Note: need to link with | i bnsl . a toresolve get host bynane()
see course website for:

— server.c, client.c
— server2.c, client2.c,

UNIX domain example
INET domain example

5-163

