
1

S -134

wait and waitpid (11.2)

• Recall from a previous slide: pid_t wait(int *status)

• wait() can: (a) block; (b) return with status; (c) return with error

• If there is more than one child, wait() returns on termination of any
children

• waitpid can be used to wait for a specific child pid

• waitpid also has an option to block or not to block

pid_t waitpid(pid, &status, option);

pid == -1 waits for any child

option == NOHANG non-blocking

option == 0 blocking

waitpid(-1, &status, 0) equivalent to wait(&status)

S -135

example: wait.c

#include <sys/types.h>

#include <sys/wait.h>

void main(void)

{

 int status;

 if(fork() == 0) exit(7); /* normal exit */

 wait(&status); prExit(status);

 if(fork() == 0) abort(); /* generates SIGABRT */

 wait(&status); prExit(status);

 if(fork() == 0) status /= 0; /* generates SIGFPE */

 wait(&status); prExit(status);

}

S -136

prExit.c

#include <sys/types.h>

#include <sys/wait.h>

void prExit(int status)

{

 if(WIFEXITED(status))

 printf("normal termination, exit status = %d\n",

 WEXITSTATUS(status));

 else if(WIFSIGNALED(status))

 printf("abnormal termination, signal number = %d\n",

 WTERMSIG(status));

 else if(WIFSTOPPED(status))

 printf("child stopped, signal number = %d\n",

 WSTOPSIG(status));

}

S -137

exec

• Six versions of exec:

execl(char *pathname, char *arg0, ... , (char*) 0);

execv(char *pathname, char *argv[]);

execle(char *pathname, char *arg0, ..., (char*) 0,

 char *envp[]);

execve(char *pathname, char *argv[],

 char *envp[]);

execlp(char *filename, char *arg0, ..., (char*) 0);

execvp(char *filename, char *argv[]);

S -138

Memory Layout of a C program

text

heap

stack

initialized data

uninitialized data

read from program file by exec

initialized to zero by exec

command-line arguments
and environment variables

low address

high address

•dynamically allocated memory
appears in the heap
•function invocations and local
variables appear in the stack

grow & shrink
as needed

S -139

Miscellaneous: permissions

• Read permissions for a directory and execute permissions for it are not
the same:

– Read: read directory, obtain a list of filenames

– Execute: lets users pass through the directory when it is a
component of a pathname being accessed

• Cannot create a new file in a directory unless user has write
permissions and execute permission in that directory

• To delete an existing file, the user needs write and execute permissions
in the directory containing the file, but does not need read or write
permission for file itself (!!!)

2

S -140

Miscellaneous: buffering control

int setbuffer(FILE *fp, char *buf, int size)

– specifies that “buf” should be used instead of the default system-
allocated buffer, and sets the buffer size to “size”

– if “buf” is NULL, i/o will be unbuffered

– used after stream is opened, but before it is read or written

int setlinebuf(FILE *fp)

– used to change stdout or stderr to line buffered

– can be called anytime

• A stream can be changed from unbuffered or line buffered to block
buffered by using freopen(). A stream can be changed from block
buffered or line buffered to unbuffered by using freopen()
followed by setbuf() with a buffer argument of NULL.

S -141

Signals

S -142

Motivation for Signals (11.15)

• When a program forks into 2 or more processes, rarely do they execute
independently of each other

• The processes usually require some form of synchronization, and this
is typically handled using signals

• Data usually needs to be passed between processes also, and this is
typically handled using pipes and sockets, which we’ll discuss in detail
in a week or two

• Signals are usually generated by

– machine interrupts

– the program itself, other programs, or the user (e.g. from the
keyboard)

S -143

Introduction

• <sys/signal.h> lists the signal types on cdf. Table 11.5 and
signal(5) give a list of some signal types and their default actions

• When a C program receives a signal, control is immediately passed to
a function called a signal handler

• The signal handler function can execute some C statements and exit in
three different ways:

– return control to the place in the program which was executing
when the signal occurred

– return control to some other point in the program

– terminate the program by calling the exit (or _exit) function

S -144

sigset()

• A default action is provided for each kind of signal, such as terminate,
stop, or ignore

• For nearly all signal types, the default action can be changed using the
signal() function. The exceptions are SIGKILL and SIGSTOP

• Usage: signal(int sig, void (*disp)(int))

• For each process, UNIX maintains a table of actions that should be
performed for each kind of signal. The signal() function changes
the table entry for the signal named as the first argument to the value
provided as the second argument

• The second argument can be SIG_IGN (ignore the signal), SIG_DFL
(perform default action), or a pointer to a signal handler function

S -145

sigset() example
#include <stdio.h>

#include <stdlib.h>

#include <sys/signal.h>

int i = 0;

void quit(int code) {

 fprintf(stderr, "\nInterrupt (code=%d, i=%d)\n", code, i);

 exit(123);

}

void main(void) {

 if (signal(SIGINT , quit) == SIG_IGN) exit(1);

 if (signal(SIGTERM, quit) == SIG_IGN) exit(2);

 if (signal(SIGQUIT, quit) == SIG_IGN) exit(3);

 for(;;)

 if(i++ % 5000000 == 0) putc('.', stderr);

}

3

S -146

Checking the return value

• The data type that signal() returns is:

 pointer to function with int argument returning void

• So, the variable used to hold the result of a call to signal should be
declared as follows:

void (*signal_result)(int);

• It is possible for a child process to accept signals that are being ignored
by the parent, which more than likely is undesirable

• Thus, the normal method of installing a new signal handler is:
oldhandler = sigset(SIGHUP, SIG_IGN);

if(oldhandler != SIG_IGN)

 sigset(SIGHUP, newhandler);

S -147

Signalling between processes

• One process can send a signal to another process using the
misleadingly named function call

 kill(int pid, int sig)

• This call sends the signal “sig” to the process “pid”

• Signalling between processes can be used for many purposes:

– kill errant processes

– temporarily suspend execution of a process

– make processes aware of the passage of time

– synchronize the actions of processes

S -148

Timer signals

• Three interval timers are maintained for each process:
– SIGALRM (real-time alarm, like a stopwatch)

– SIGVTALRM (virtual-time alarm, measuring CPU time)

– SIGPROF (used for profilers, which we’ll cover later)

• Useful functions to set and get timer info are:

– setitimer(), getitimer()

– alarm() (simpler version: only sets SIGALRM)

– pause() (suspend until next signal arrives)

– sleep() (caused calling process to suspend)

– usleep() (like sleep(), but with finer granularity)

Note: sleep() and usleep() are interruptible by other signals

