wait and waitpid (11.2)

* Recall fromapreviousslide: pid_t wait(int *status)

« wait () can: (a) block; (b) return with status; (c) return with error

« If thereis more than one child, wai t () returns on termination of any
children

« wai t pi d can be used to wait for a specific child pid

« wai t pi d also has an option to block or not to block

pid_t waitpid(pid, &status, option);
pid = - waits for any child
option == NOHANG non-blocking
option == 0 blocking
wai tpid(-1, &status, 0) equivalentto wait (&status)

S-134

example: wai t. c

#i ncl ude <sys/types. h>
#i ncl ude <sys/wait.h>
void main(void)

prExit.c

#i ncl ude <sys/types. h>
#i ncl ude <sys/wait.h>
void prExit(int status)

{
if(WFEXITED(status))
printf("normal termination, exit status = %\ n",
VEXI TSTATUS(status));
else if(WFSIGNALED(status))
printf("abnormal ternination, signal nunber = %i\n",
WERMBI G(status));
el se i f(WFSTOPPED(status))
printf("child stopped, signal nunber = %l\n",
WSTOPSI G(status));
}

5-136

{
int status;
if(fork() ==0) exit(7); /* normal exit */
wait(&status); prExit(status);
if(fork() ==0) abort(); /* generates S| GABRT */
wait(&status); prExit(status);
if(fork() == 0) status /= 0; /* generates SIGFPE */
wait(&status); prExit(status);
}
S$-135
« Six versions of exec:
execl (char *pathname, char *argO, ... , (char*) 0);
execv(char *pathname, char *argv[]);
execl e(char *pathnane, char *arg0, ..., (char*) O,
char *envp[]);
execve(char *pathnane, char *argv[],
char *envp[]);
execl p(char *filenane, char *arg0, ..., (char*) 0);
execvp(char *filenane, char *argv[]);
$-137

Memory Layout of a C program

high address stack } command-line arguments
* and environment variables
grow & shrink «dynamically allocated memory
as needed appears in the heap
f «function invocations and local
variables appear in the stack
heap
uninitialized data initialized to zero by exec
initialized data
read from program file by exec
text

low address

5-138

Miscellaneous. permissions

* Read permissions for adirectory and execute permissions for it are not
the same:
— Read: read directory, obtain alist of filenames
— Execute: lets users pass through the directory whenitisa
component of a pathname being accessed

« Cannot create anew filein adirectory unless user has write
permissions and execute permission in that directory

« Todelete an existing file, the user needs write and execute permissions
in the directory containing the file, but does not need read or write
permission for fileitself (!!!)

5-139

Miscellaneous:. buffering control

int setbuffer(FILE *fp, char *buf, int size)

— specifiesthat “buf should be used instead of the default system-
allocated buffer, and sets the buffer sizeto “si ze”

— if “buf” isNULL, i/o will be unbuffered

— used after stream is opened, but before it is read or written
int setlinebuf(FILE *fp)

— used to change st dout or st derr toline buffered

— can becalled anytime

« A stream can be changed from unbuffered or line buffered to block
buffered by using f r eopen() . A stream can be changed from block
buffered or line buffered to unbuffered by using f r eopen()
followed by set buf () with abuffer argument of NULL.

S-140

Signals

s-141

Motivation for Signals (11.15)

« When aprogram forksinto 2 or more processes, rarely do they execute
independently of each other

* The processes usually require some form of synchronization, and this
istypically handled using signals

« Datausually needs to be passed between processes also, and thisis
typically handled using pipes and sockets, which we'll discuss in detail
in aweek or two

« Signasare usualy generated by
— machine interrupts
— the program itself, other programs, or the user (e.g. from the
keyboard)

s-142

Introduction

« <sys/signal.h> liststhesignal typeson cdf. Table 11.5 and
si gnal (5) givealist of somesignal types and their default actions

« When aC program receives asignal, control isimmediately passed to
afunction called asignal handler

« Thesignal handler function can execute some C statements and exit in
three different ways:

— return control to the place in the program which was executing
when the signal occurred

— return control to some other point in the program
— terminate the program by calling theexi t (or _exi t) function

s-143

si gset ()

« A default action is provided for each kind of signal, such as terminate,
stop, or ignore

« For nearly all signal types, the default action can be changed using the
si gnal () function. The exceptionsare SI GKI LL and SI GSTOP

* Usage:signal (int sig, void (*disp)(int))

« For each process, UNIX maintains atable of actions that should be
performed for each kind of signal. Thesi gnal () function changes
the table entry for the signal named as the first argument to the value
provided as the second argument

* The second argument can be SI G_| GN (ignore the signal), SI G_DFL
(perform default action), or a pointer to asignal handler function

si gset () example
#incl ude <stdio. h>
#incl ude <stdlib. h>
#i ncl ude <sys/signal.h>
int i =0;
void quit(int code) {
fprintf(stderr, "\ninterrupt (code=%l, i=%l)\n", code, i);
exit(123);
}
void main(void) {
if (signal(SIGNT, quit) == SIGIGQY exit(1);
if (signal(SIGTERM quit) SIGIGN) exit(2);
if (signal(SIGQUIT, quit) ==SIGIGQY exit(3);
for(;:)
if(i++ %5000000 == 0) putc('.', stderr);

S-145

Checking the return value

Thedatatypethat si gnal () returnsis:
pointer to function with int argument returning void

So, the variable used to hold the result of acall to signal should be
declared as follows:

void (*signal _result)(int);
It is possible for a child process to accept signals that are being ignored
by the parent, which more than likely is undesirable
Thus, the normal method of installing a new signal handler is:
ol dhandl er = sigset(SIGHUP, SIGIGN);
if(oldhandler I= SIGIGN)
sigset(SIGHUP, newhandler);

S-146

Signalling between processes

One process can send asignal to another process using the
misleadingly named function call
kill(int pid, int sig)
Thiscall sendsthe signal “si g” to the process “pi d”
Signalling between processes can be used for many purposes:
— kill errant processes
— temporarily suspend execution of a process

— make processes aware of the passage of time
— synchronize the actions of processes

s-147

Timer signals

Threeinterval timers are maintained for each process:

— SI GALRM (real-time alarm, like a stopwatch)
— SI GVTALRM (virtual-time alarm, measuring CPU time)
— SI GPROF (used for profilers, which we'll cover later)

Useful functions to set and get timer info are:
— setitiner(), getitimer()

— alarm() (simpler version: only sets S| GALRM)

— pause() (suspend until next signal arrives)

— sleep() (caused calling process to suspend)

— usl eep() (likesl eep() , but with finer granularity)

Note: sl eep() andusl eep() areinterruptible by other signals

S-148

